Internal Assessment M.A./ M.Sc. Semester-III Examination, 2018 (DDE) Subject: Mathematics (Pure Stream)

Use separate answer-sheet for each paper (Answer of each paper should be limited to one A4 size page) Notation and symbols have their usual meanings

Time: 2 Hours

Full Marks: 25

Paper: MPG 301

UNIT-I (Modern Algebra-II)

Answer any One question. Only first answer will be evaluated.						
1. Let <i>H</i> be a normal subgroup of a group G such that $ H = 2$. Prove that $H \subseteq Z(G)$.	(3)					
2. Show that in a commutative ring with 1, every maximal ideal is prime.						
Unit-II (General Topology) Answer any one question. Only first answer will be evaluated. 1. Let (X, τ) be the product space of a family of topological space $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Lambda\}$, Λ be	1×2=2 ing index set.					
Is each projection map $p_{\alpha}: X \to X_{\alpha}, \alpha \in \Lambda$, continuous? Justify your answer.	(2)					

2. Is every locally compact space compact? Support your answer.

Paper: MPG 302

Unit-I (Graph Theory)

Answer any one question. Only first answer will be evaluated.	1×4=4
1. (a) Does there exist any simple planar graph with 5 vertices and 11 edges? Justify your answer.	
(b) Give an example of Eulerian graph which is not Hamiltonian.	(2+2)
2. (a) State Havel-Hakimi theorem.	
50 4 43	

(b) Draw the graph of which		1	is the adjacency matrix.	(2+2)

Unit-II (Set Theory-I)

Answer any one question. Only first answer will be evaluated.

- 1. Define Cartesian product of a non-void family $\{A_i : i \in I\}$ of non-void sets.
- 2. State Axiom of choice.

Paper: MPG 303

Unit-I (Set Theory-II and Mathematical Logic)

Answer **any one** question. Only **first answer** will be evaluated.

- 1. Let α and β be any two ordinal numbers. Does the result $\alpha + \beta = \beta + \alpha$ hold? Support your answer.
- 2. Determine whether $((A \Leftrightarrow ((-B) \lor C)) \Rightarrow ((-A) \Rightarrow B))$ is a tautology.

1x1 = 1

1x3=3

(2)

Unit-II (Functional Analysis-II)

Answer any one question. Only first answer will be evaluated.

- 1. What do you mean by completion of a metric space? Examine if the subspace $\wp[0,1]$ of all real valued polynomials over [0,1] is a closed subspace of c[0,1] with respect to sup norm. (1+1)
- 2. In \mathbb{R}^2 define the following two norms by $||x||_1 = \max\{|x_1|, |x_2|\}$ and $||x||_2 = |x_1| + |x_2|$, where $x = (x_1, x_2) \in \mathbb{R}^2$. Are the two norms equivalent? Justify your answer. (2)

Paper: MPS 304 (Advanced Functional Analysis-I) Special Paper –I

Answer any one question. Only first answer will be evaluated.

- 1. (a) If p is a semi-norm on a vector space X and if $K = \{x \in X : p(x) < 1\}$, show that K is a balanced and absorbing set in X.
- 2. For any element x of a topological vector space X, prove that cl{x} = x + cl{0}. (2+3)
 (a) Is L₁[0,1] strictly convex? Justify your answer.
 - (b) Let *K* be a convex absorbing set containing the zero vector of a topological vector space *X* and let P_k be the Minkowski functional for *K* over *X*. If $P_k(x) < 1$, prove that $x \in K$.

(2+3)

1x5 = 5

1x5=5

1x2=2

Paper: MPS 304 (Differential Geometry of Manifolds-I) Special Paper –I

Answer any one question. Only first answer will be evaluated.	1x5=5
1. (a) Define topological manifold.	
(b) Is the tensor product commutative? Support your answer.	(2+3)
2. (a) When is a curve on a manifold said to be differentiable?	
(b) Evaluate: $(5dx+3dy+4dz) \wedge (dx-2dy-3dz)$.	(2+3)

Paper: MPS 305 (Operator Theory and Applications-I) Special Paper–II

Answer any one question. Only first answer will be evaluated.

1. Let X be a complex Hilbert space and $A, B \in B(X, X)$. If A and B are normal and $AB^* = B^*A$ then show that A + B is normal. If $T \in B(X, X)$ is self-adjoint, show that $\langle Tx, x \rangle$ is real for all $x \in X$. (3+2)

2. (a)Let E_1 and E_2 be two orthogonal projections on the closed subspaces M_1 and M_2 respectively of a Hilbert space X. If $E_1 \le E_2$ then show $||E_1x|| \le ||E_2x||$, for all $x \in X$.

(b) Show that annihilator of subset A of the normed linear space X is closed. (3+2)