M.A./M.Sc. Semester II Examination, 2020 (CBCS) Subject: Mathematics Course: MMATG 201 and MMATG 202

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Use separate booklet for each course.

Course: MMATG 201 (Real analysis - II) (Marks: 20)

Answer any **two** questions. Only **first two** answers will be evaluated. $10 \times 2 = 20$

- (a) Let E and F be two disjoint measurable subsets of ℝ and φ: E ∪ F → [0,∞) be [5] a measurable simple function. Prove that (L) ∫_{E∪F} φ dx = (L) ∫_E φ dx + (L) ∫_F φ dx.
 - (b) Let *E* be a measurable set, $f: E \to [0, \infty]$ be a measurable function and $\alpha > 0$ [5] be a real number. Prove that $m(\{x \in E: f(x) > \alpha\}) \le \frac{1}{\alpha} (L) \int_E f dx$.
- 2. (a) Let *E* be a measurable set and $f, g : E \to \mathbb{R}^*$ be two measurable functions with [5] $f = g \ a. e. \text{ on } E$, where $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$. If *f* is Lebesgue integrable over *E*, then prove that *g* is Lebesgue integrable over *E* and $(L) \int_E f \ dx = (L) \int_E g \ dx$.
 - (b) With an example show that the point-wise limit of a sequence of Lebesgue [5] integrable functions may not be Lebesgue integrable.
- 3. (a) Let {f_n}_{n∈N} be a sequence of measurable functions from a measurable set E into [5]
 [0, ∞] converging point-wise to a function f: E → [0, ∞]. Suppose further that f_n ≤ f on E, ∀ n ∈ N. Prove that lim_{n→∞}(L) ∫_E f_n dx = (L) ∫_E f dx.
 - (b) Is the series $\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{(n)^{1/7}}$, $-\pi \le x \le \pi$, Fourier series of some bounded, [5] Lebesgue integrable, 2π periodic function on $[-\pi, \pi]$? Support your answer.

Course: MMATG-202 (Complex Analysis - II) (Marks: 20)

,

Answer any two questions. Only first two answers will be evaluated. $10 \times 2 = 20$			
1.		Let <i>f</i> be analytic in a domain D ($D \subset \mathbb{C}$). If at each point $z \in D$, $f'(z)$ then show that the mapping $w = f(z)$ is conformal in <i>D</i> .	≠ 0, [10]
2.	(a)	State and prove the Casorati-Weierstrass's Theorem.	[1+4]
	(b)	State and prove the Rouche's Theorem.	[1+4]
3.		Evaluate any two of the following integrals:	
	(a)	$\int_{0}^{\infty} \frac{\sin(mx)}{x} dx, \ m > 0.$	[5]
	(b)	(PV) $\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^2 + m^2} dx$ for $a, m > 0$.	[5]
	(c)	$\int_{0}^{\infty} \frac{x^{1/2}}{x^3 + 1} dx.$	[5]