MBA(D) 3rd Semester Examination, June 2019 (DDE) [Sessions: (Jan 2017–Dec 2018) & (Jan 2016–Dec 2017)] Subject: Operations Research

Paper: MBD-301

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

- **1.** (a) Enumerate, with brief description, the applications of linear programming problem (LPP) in business decision-making.
 - (b) A diet conscious housewife wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum daily needs of the vitamins A, B and C for the family are 60, 40 and 32 units, respectively. For the supply of these vitamins the housewife relies on two fresh foods F_1 and F_2 . One unit of F_1 contains 14, 10 and 4 units of vitamins A, B and C respectively. One unit of F_2 contains 4, 8 and 16 units of the three vitamins respectively. F_1 costs Rs. 3 per unit and F_2 Rs. 2 per unit. The problem is how many units of each food the housewife should buy every day to keep her food bill as low as possible. Formulate it as a linear programming problem to minimize the total cost. 8+8=16
- 2. (a) Use simplex method to solve the following LP problem:

Minimize $z = 5x_1 + 3x_2$ Subject to the constraints $2x_1 + 4x_2 \le 12$ $2x_1 + 2x_2 = 10$ $5x_1 + 2x_2 \ge 10$ and $x_1, x_2 \ge 0$

(b) Write a dual LPP for the following primal:

 $\begin{array}{l} \text{Minimize } z = x_1 + 2x_2 + 3x_3 \\ \text{Subject to} \\ 2x_1 - x_2 + x_3 \geq 4 \\ x_1 + x_2 + 2x_3 \leq 8 \\ x_1 - x_2 \geq 2 \\ x_1, x_2, x_3 \geq 0 \end{array}$

3. Solve the following transportation problem:

	D_1	D_2	D_3	D_4	D_5	Supply
S_1	4	7	3	8	2	4
S_2	1	4	7	3	8	7
S_3	7	2	4	7	7	9
S_4	4	8	2	4	7	2
Demand	8	3	7	2	2	

Full Marks: 80

10+6=16

- 4. (a) Write down the mathematical model of the assignment problem.
 - (b) What do you mean by 'Unbalanced Assignment Problems'? How do you solve such problems?
 - (c) A department has five employees with five jobs to be performed. The time (in hours) each man will take to perform each job is given in the effectiveness matrix below:

		Employees				
		Ι	II	III	IV	V
Jobs	А	10	5	13	15	16
	В	3	9	18	13	6
	С	10	7	2	2	2
	D	7	11	9	7	12
	Ε	7	9	10	4	12

How should the jobs be allocated, one per employee, so as to minimize the total man-hours? 3+5+8=16

- 5. (a) A project schedule has the following characteristics as shown in the table below:
 - (i) Construct the project network.
 - (ii) Compute Earliest Expected Time (T_E) and Latest Allowable Time (T_L) for each activity.
 - (iii) Find the critical path.

Project Schedule						
Activity	Name	Time (days)	Activity	Name	Time (days)	
1-2	А	4	5-6	G	4	
1-3	В	1	5-7	Н	8	
2-4	С	1	6-8	Ι	1	
3-4	D	1	7-8	J	2	
3-5	Е	6	8-10	K	5	
4-9	F	5	9-10	L	7	

(b) Compare and contrast between CPM and PERT.

10+6=16

- 6. (a) Explain total, independent and free floats in network analysis.
 - (b) A small project has seven activities. The relevant data about these activities is given below:

Activity	Dependence	Normal Duration (Days)	Crash Duration (Days)	Normal Cost (Rs.)	Crash Cost (Rs.)
А		7	5	500	900
В	А	4	2	400	600
С	А	5	5	500	500
D	А	6	4	800	1,000
Е	B, C	7	4	700	1,000
F	C, D	5	2	800	1,400
G	E, F	6	4	800	1,600

6+10=16

8×2=16

- 7. (a) What is a game in game theory? What do you understand by 'zero-sum' in this context?
 - (b) Define (i) Competitive game (ii) Payoff matrix (iii) Saddle point (iv) Optimal strategy.
 - (c) Define pure strategy and mixed strategy and explain the difference between them. 4+8+4=16
- **8.** Write short notes on *any two*:
 - (a) Decision making under certainty, uncertainty and risk
 - (b) Degeneracy in transportation problem
 - (c) Operating characteristics of a queue