M.A./M.Sc. Semester II Examination, 2020 (CBCS) Subject: Mathematics Course: MMATG 205 and MMATG 206

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Use separate booklet for each course.

Course: MMATG 205 (Calculus of \mathbb{R}^n -1) (Marks: 20)

Answer any **two** questions. Only **first two** answers will be evaluated. $10 \times 2 = 20$

- 1. (a) State and prove Cantor's intersection theorem over \mathbb{R}^n . [2+5]
 - (b) Let $A = [0,1] \times [0,1], B = \mathbb{R}^2$. Does there exist a continuous function [3] $f: A \to B$ such that f(A) = B? Support your answer.
- 2. (a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function given by $f = (f_1, f_2, ..., f_m)$. Let $c, u \in \mathbb{R}^n$. [5] Then prove that f'(c; u) exists if and only if $f'_k(c; u)$ exists for each k = 1, 2,..., m and $f'(c; u) = (f'_1(c; u), f'_2(c; u), ..., f'_m(c; u))$.
 - (b) Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be a function defined by $f(x, y, z) = (xyz, 2x + 3y + 4z), \forall (x, y, z) \in \mathbb{R}^3$. Find Df(1, 2, 0). [5]
- 3. State and prove Mean value theorem for a function $f : \mathbb{R}^n \to \mathbb{R}^m$. Hence [2+5+3]show that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable and $Df(c) = \bigcirc, c \in \mathbb{R}^n$, where \bigcirc is the zero function from \mathbb{R}^n to \mathbb{R}^m then f is constant on \mathbb{R}^n .

Course: MMATG 206 (Abstract Algebra I) (Marks: 20)

,

Answer any **two** questions. Only **first two** answers will be evaluated. $10 \times 2 = 20$

- 1. (a) Show that any group of order 6 is either S_3 or \mathbb{Z}_6 (upto isomorphism). [5]
 - (b) Let G be a non-commutative group of order 2p, p odd prime. Show that the order [5] of the group of inner automorphisms of G is 2p.
- 2. (a) Let *G* be a finite group acting on a set *X*. Show that $|Gx| = [G: G_x]$, where *Gx* is [5] the orbit of *x* in *X* and *G_x*, the stabilizer of *x* in *G*.
 - (b) Suppose $X = \{1,2,3\}$ is a S_3 -set via the action $\sigma x = \sigma(x)$. Calculate $|S_3x|$, for x = [5] = 1,2,3.
- 3. (a) Let G be a finite group of order p^n , where p is prime and $n \ge 0$. Then show that [5] G has non-trivial centre Z(G).
 - (b) Show that any group of order 2020 is not simple. [5]