Internal Assessment M.A./ M.Sc. Semester-IV Examination,2019(DDE) Subject: Mathematics (Pure Stream)(Old Pattern)

Use separate answer-sheet for each paper (Answer of each paper should be limited to one A4 size page) Notations and symbols have their usual meanings

Time: 2 Hours	Full Marks: 20	
Paper :MPG 401 (Modern Algebra-III)		
Answer any one question. Only first answer will be evaluated.	$1 \times 5 = 5$	
 (a) State Fundamental theorem of Galois Theory. (b) Let K be a subfield of a field F. Then G(F/K) is a subgroup of the group AutF. Let M be an R-module. Then the following are equivalent: (i) M is Artinian. (ii) M satisfies minimal condition for submodules. 	(2+3)	
Paper :MPG 402		
Unit- I (General Topology-II)		
Answer any one question. Only first answer will be evaluated.	$1 \times 3 = 3$	
 Show that components of a totally disconnected space are it's points. Show that the uniformity on a pseudo-metric space (X, d) has a countable base. 		
Unit- II (Functional Analysis-III)		
Answer any one question. Only first answer will be evaluated.	$1 \times 2 = 2$	
1. If X is a non-trivial real normed linear space, then prove that the first conjugate space X^* of X is also non-trivial.		
2. When is a sequence $\{x_n\}$ in a normed linear space X said to be weakly convergent to an el of X? If $x_n \to x$ weakly, then show that $\{ x_n \}$ is bounded.	ement x (1+1)	
Paper :MPS 403 (Advanced Functional Analysis-II) Special Paper-I		
Answer any one question. Only first answer will be evaluated.	1×5=5	

- 1. Let Y be a subspace of a normed linear space X with $\dim(Y) < \propto$. Then for each $x \in X$, there is a best approximation to x out of Y.
- 2. (a) If a commutative Banach algebra with identity *e* in which every non-zero member is invertible, then show that X is isometrically isomorphic to the scalar field C.
 (b) Define a Gelfand topology. (3+2)

Paper : MPS 403 (Differential Geometry of Manifolds-II) Special Paper-I

Answer any one question. Only first answer will be evaluated.		1×5=5	
1.	(a) Define a manifold of constant curvature. Give an example of it.(b) When is a Riemannian manifold <i>M</i> said to be projectively flat ?	(3+2)	
2.	 (a) Prove that the product of two symmetric endomorphism of the tangent space T_pM of a Riemanni manifold (M, g) at p ∈ M is symmetric if and only if they commute with each other. (b) Define linear connection on a smooth manifold M. 	an (3+2)	
Paper :MPS 404 (Operator Theory and Application-II)			

Special paper-II

Answer any one question. Only first answer will be evaluated.	1×5=5

- 1. If f is a bounded, symmetric sesquilinear functional, then show that $||f|| = ||\hat{f}||$.
- 2. (a) Let $T: X \to X$ be a compact linear operator on a normed linear space X. Then for every $\lambda \neq 0$ the null space $N(T_{\lambda})$ of $T_{\lambda} = T \lambda I$ is finite dimensional.
 - (b) State spectral theorem for compact normal operators on a complex Hilbert space. (3+2)