M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Applied Stream) Paper: MAG 401 (Continuum Mechanics -III)

,

Time: 2 Hours Full Ma			arks: 45
	Ca	The figures in the margin indicate full marks. andidates are required to give their answers in their own words as far as practica [Notation and symbols have their usual meaning]	ble.
Answer any five questions. Only first five answers will be evaluated. $9 \times 5 =$			
1.	(a)	Define circulation. State and prove Kelvin's theorem on circulation.	[2+5]
	(b)	Show that the velocity components $u = a(x^2 - y^2), v = 2a(x^2 - xy), w = 0$ represent a possible liquid motion.) [2]
2.	(a)	Define an inviscid fluid. Write down the stress tensor at a point of such fluid.	[2+1]
	(b)	Obtain Helmholtz's equation of vorticity for an incompressible inviscid fluid moving under conservative forces.	d [6]
3.	(a)	State and prove Milne-Thomson circle theorem for a two dimensional motion of an inviscid liquid.	n [5]
	(b)	Show that in a two dimensional irrotational flow, velocity potential and stream function both satisfy Laplace equation.	n [4]
4.	(a)	Define a vortex filament. Prove that in a circulation preserving motion, vortex lines move with the fluid.	x [2+3]
	(b)	Show that vortex lines cannot begin or end within the fluid.	[4]
5.	(a)	Obtain the dimensionless form of Navier-Stokes' equations for steady motion of viscous incompressible fluid without body force.	n [5]
	(b)	For steady motion of viscous incompressible fluid through a circular pipe unde uniform axial pressure gradient, find the velocity distribution of the fluid.	r [4]
6.	(a)	Using Cisotti's equation find the complex potential for simple harmoni	c [5]
	(b)	Show that the individual water particles underneath a progressive wav describe closed elliptic paths.	e [4]
7.	(a)	Obtain the expression for kinetic energy of stationary wave.	[5]
	(b)	Find the dissipation function for the flow given by $u = A(a^2 - y^2 - z^2)$, $v = 0$, $w = 0$, where u, v, w are the components of velocity and A is a constant.	= [4]

M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Pure Stream) Paper: MPG401 (Modern Algebra - II)

,

Time: 2 Hours			Full Marks: 45	
	Ca	The figures in the margin indicate full marks. andidates are required to give their answers in their own words as far as practica [Notation and symbols have their usual meaning]	ble.	
Answer any five questions. Only first five answers will be evaluated.			9×5 = 45	
1	(a)	Let F/K be a finite field extension. Show that every element of F is algebraic over K .	• [5]	
	(b)	Give an example with proper justification of an infinite extension F/K where each element of F is algebraic over K .	[4]	
2.		Find through detailed computation of the following:		
		i. $[Q(\sqrt{7},\sqrt{3}):Q(\sqrt{3})]$	[6]	
		ii. Basis of $Q(\sqrt{7}, \sqrt{3})$ over Q .	[3]	
3.	(a)	Show that π^2 and $\sqrt{\pi}$ are transcendental over the field of reals <i>R</i> .	[3+3]	
	(b)	Show that every non-constant polynomial over a field has a splitting field.	[3]	
4.	(a)	Find a splitting field <i>S</i> of $x^4 - 10x^2 + 21$ over <i>Q</i> . Find basis of <i>S</i> over <i>Q</i> .	[4+2]	
	(b)	If F is a finite field then show that F is not algebraically closed.	[3]	
5.	(a)	Show that every field of characteristic 0 is perfect.	[5]	
	(b)	Show that the Galois group of the polynomial $x^3 - 5$ over Q is isomorphic to S_3 .	[4]	
6.	(a)	Let F/K be a field extension. Show that $Aut(F/K)$ permutes the roots of irreducible polynomials.	[5]	
	(b)	Show that $Aut(Q(\sqrt{2})/Q)$ is a cyclic group of order 2.	[4]	
7.		Let R be a ring and let M be an R -module. Then show that M is Noetherian R -module if and only if every non-empty set of submodules of M contains a maximal element under inclusion if and only if every submodule of M is finitely generated.	[3+3+3]	