M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Applied Stream)

Paper: MAG 402

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning] Write the answer to Questions of each Group in separate books.

Group - A (Elements of Quantum Mechanics) (Marks: 27)

Answer any **three** questions. Only **first three** answers will be evaluated. $9 \times 3 = 27$

- 1 Show that in the scattering of electromagnetic radiation from a stationary electron [9] the change in wave length of the radiation depends only on the angle of scattering.
- 2 Define stationary state. Show that if the Hamiltonian is independent of time the [1+8] Schrodinger equation admits a stationary state solution.
- 3 Derive the equation of continuity of non-relativistic quantum mechanics. [9]
- 4 Show that solution of the Schrodinger equation corresponding to the one- [9] dimensional harmonic oscillator reduces to the solution of Hermite differential equation.
- 5 Calculate the ratio of the expectation value of potential energy to the expectation [9] value of the kinetic energy of hydrogen atom in the ground state.

Group - B (Chaos and Fractals) (Marks: 18)

Answer any two questions. Only first two answers will be evaluated. 9×2			$0 \times 2 = 18$
1	(a)	Give the definition of chaotic map. Show that the doubling map $g: S \to S$ defined by $g(\theta) = 2\theta, \theta \in S$ is chaotic on the unit circle <i>S</i> .	5 [2+3]
	(b)	Explain briefly 'boundary of chaos' and 'universality'.	[4]
2	(a)	Show that the logistic map with parameter $r = 4$ and the tent map are conjugate.	[6]
	(b)	Define Lyapunov exponent for a map.	[3]
3	(a)	Prove that the length of von Koch curve is infinite.	[3]
	(b)	How do you find the self-similar dimension of a fractal? Calculate similarity	y [3+3]
		dimension of the Cantor set.	

M.A./M.Sc. Semester IV Examination, 2019 (under DDE)

Subject: Mathematics (Pure Stream)

Paper: MPG 402

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning] Write the answer to Questions of each Group in separate books.

Group – A (General Topology- II) (Marks: 27)

Answer any **three** questions. Only **first three** answers will be evaluated. $9 \times 3 = 27$

- (a) Show that a topological space (X, τ) is connected if and only if there does not exist [4] any continuous function f: X → R such that f(X) consists of exactly two points, the real number space R being equipped with usual topology.
 - (b) Is image of a locally connected space under a continuous map locally connected? [5] Support your answer.
- 2 (a) Prove that a topological space (X, τ) is locally connected if and only if each [5] component of an open subspace is open in (X, τ).
 - (b) Prove that a uniform space (X, μ) is T_1 if and only if the intersection of all members [4] of μ is the diagonal in $X \times X$.
- 3 If (X,τ) is a second countable T_4 -space then prove that there exists a [9] homeomorphism f of X onto a subspace of R_{∞} where R_{∞} is the infinite dimensional Euclidean space.
- 4 What is meant by one point compactification of a topological space. State and prove [9] Alexandroff's theorem on one point compactification.
- 5 (a) Define uniform continuity between two uniform spaces. Show that a uniformly [3] continuous function between two uniform spaces is continuous.
 - (b) If X is a path connected space, then prove that for any pair of points x₀ and x₁ in X [6] the fundamental groups π₁(X, x₀) and π₁(X, x₁) are isomorphic.

Group - B (Functional Analysis - II) (Marks: 18)

,

Answer any **two** questions. Only **first two** answers will be evaluated. $9 \times 2 = 18$

- 1 (a) Let X and Y be two normed linear spaces over the same field F = (ℝ or C) and [5] T:X → Y be a linear operator. Prove that T⁻¹ exists and is continuous on its domain of definition if and only if there exists a constant m > 0 such that m||x|| ≤ ||T(x)||, ∀ x ∈ X.
 - (b) Let S be a finite dimensional subspace of an inner product space X and x be any [4] vector in X. Prove that there exists a unique vector y₀ ∈ S such that ||x y₀|| ≤ ||x y||, ∀y ∈ S and (x y₀) ⊥ S.
- 2 (a) Let M be a subspace of a real normed linear space X and let f: M → R be a [5] bounded linear functional. Prove that f can be extended to a bounded linear functional F: X → R such that ||f|| = ||F||.
 - (b) Prove that every orthonormal set in a separable Hilbert space is countable. [4]
- 3 (a) When is a normed linear space said to be reflexive? If a normed linear space X is [1+4] reflexive, then prove that X' is also reflexive, where X' is the conjugate space of X.
 - (b) When is a sequence {x_n}_{n∈ℕ} in a normed linear space X said to be weakly [1+3] convergent to an element x of X? If a sequence {x_n}_{n∈ℕ} in a normed linear space X is weakly convergent to x ∈ X, then prove that {||x_n||}_{n∈ℕ} is bounded.