M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Applied Stream) Paper: MAS 403 (Viscous Flows, Boundary Layer Theory and MHD)

Time: 2 Hours Full Mar				
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]				
Answer any five questions. Only first five answers will be evaluated. 9×5	5 = 45			
1 What do you mean by MHD approximations? Find the expression for Lorentz [3]	3+3+3]			
force of a conducting material. Simplify this force using MHD approximations.				
2 (a) Establish $\frac{D}{Dt}\left(\frac{\vec{B}}{\rho}\right) = \left(\frac{\vec{B}}{\rho} \cdot \vec{\nabla}\right)\vec{\nabla}$, where symbols have their usual meaning.	[6]			
(b) Drive Lundquist criterion.	[3]			
3 Describe briefly the Hartman flow in MHD. Find the velocity components of the flow.	[4+5]			
4 State and prove Ferraro's iso-rotation theorem.	[2+7]			
5 What is pinch effect? Discuss linear pinch configuration and its stability [2 behavior.	2+3+4]			
6 Give the concept of magnetic force-free field. Show that a force-free field is always obtained as a superposition of two different fields which are to be characterized by you?	[4+5]			
7 Briefly discuss MHD Rayleigh problem. Find velocity components when kinematic fluid viscosity << magnetic diffusivity.	[4+5]			
M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Pure Stream) Paper: MPS 403 (Advanced Functional Analysis II)				
Time: 2 Hours Full Marks: 45				

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any **five** questions. Only **first five** answers will be evaluated.

- 1
- Let X be a normed linear space and Y be a subspace of X such that $Dim(Y) < \infty$. Prove [5+4]

 $9 \times 5 = 45$

that there exists a best approximation to an element $x \in X$ out of Y. Does the result hold if Y is infinite dimensional? Justify your answer.

2 (a) If C is a non-empty closed convex subset of a Hilbert space H, then show that for each [6+3] $x \in H$ there exists a unique best approximation from C to x. Hence show that C contains a unique vector of smallest norm.

3 (a) Let *B* be a Banach algebra with identity *e* and let $b \in B$. Suppose $\mu \neq 0$ be a complex [5]

scalar such that
$$|\mu| > ||b||$$
. Show that $(\mu e - b)^{-1}$ exists and $(\mu e - b)^{-1} = \sum_{k=1}^{\infty} \mu^{-n} b^{n-1} (b^0 = e)$.

- (b) Prove that the collection of all non-invertible elements in a Banach algebra with an identity [4] element is a closed set in it.
- 4 (a) If *G* be the collection of all invertible elements in a Banach algebra *X* with an identity [5] element. Prove that the mapping: $G \to G$ given by $x \to x^{-1}(x \in G)$ is a homeomorphism.
 - (b) Let *B* be a Banach algebra in which every non-zero element is invertible. Show that *B* is [4] isometrically isomorphic to the complex field.
- 5 (a) When is a normed linear space said to be reflexive? If X be a reflexive Banach space then [1+4] prove that every bounded sequence in X^* , the first dual of X has a weakly convergent subsequence.
 - (b) Find the first conjugate space of \mathbb{R}^n . Is \mathbb{R}^n reflexive? Justify your answer [3+1]
- 6 (a) State and prove Uniform Boundedness Principle and hence show that space \wp of all real [4] valued polynomials $p(s) = \sum_{i=0}^{n} p_i s^i, s \in \mathbb{R}, p \in \wp$ with norm $||p|| = \max_{0 \le k \le n} |p_k|$, index *n* is not

fixed, is not complete.

- (b) Let X be a complex Banach algebra with an identity. If $x \in X$ and $\lambda \in \mathbb{C}$ then show that the [5] resolvent function $x(\lambda)$ is analytic at every point of $\rho(x)$, the resolvent set of x.
- 7 (a) Define weak* topology for a given normed linear space. If X is a normed linear space then [2+2] prove that weak* topology on X^* , the first dual of X, is Hausdorff.
 - (b) State and prove Gelfand Mazur Theorem.

M.A./M.Sc. Semester IV Examination, 2019 (under DDE) Subject: Mathematics (Pure Stream) Paper: MPS 403 (Differential Geometry of Manifolds - II)

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any five questions.	. Only first five answers will be evaluated.	

[5]

1		State and prove fundamental theorem of Riemannian geometry.	[1+8]
2	(a)	Define a gradient vector field on a Riemannian manifold.	[2+3]
		If Z is a gradient vector field on a Riemannian manifold (M, g) with the Levi-Civita	
		connection ∇ then prove that $g(\nabla_X Z, Y) = g(\nabla_Y Z, X)$ for any $X, Y \in \chi(M)$.	
	(b)	Let (M, g) be a Riemannian manifold and p be a point of M. Prove that the product of	[2+2]
		two symmetric endomorphism of the tangent space T_pM is symmetric if and only if they	
		commute each other.	
3	(a)	Define almost complex manifold.	[2+4]
		Show that every almost complex manifold is of even dimensional.	
	(b)	Show that, in an almost complex manifold M of dimension 2m, the almost complex	[3]
		structure F has m eigenvalues i and m eigenvalues -i.	
4	(a)	Define Nijenhuis tensor on an almost complex manifold. Show that it is pure in both	[2+3]
		slots.	
	(b)	Obtain a necessary and sufficient condition for a vector field in an almost complex	[4]
		manifold to be contravariant almost analytic.	
5	(a)	Deduce Gauss and Weingarten formulae for the submanifold of a Riemannian manifold.	[6]
	(b)	Define a manifold of constant curvature with an example.	[3]
6	(a)	Define Einstein manifold. Prove that a Riemannian manifold (M^n, g) (of dimension n>2)	[1+3+2]
		of constant curvature is an Einstein manifold. Is the converse true? Justifying your	
		answer.	
	(b)	Show that the scalar curvature of an n (>2)-dimensional Einstein manifold is constant.	[3]
_			
7	(a)	Define sectional curvature of a Riemannian manifold.	[2+5]
		Prove that the curvature tensor of a Riemannian manifold (M, g) at a point p is uniquely	
		determined by sectional curvatures of all 2-dimensional tangent subspaces of T_pM at p.	503
	(b)	State Schur's Theorem.	[2]