M.A./M.Sc. Semester II Examination, 2019 (under DDE)

Subject: Mathematics Paper: MCG 201

Time: 2 Hours Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Notation and symbols have their usual meaning]

Write the answer to Questions of each Group in separate books.

Group - A (Complex Analysis - II)

(Marks: 27)

Answer any three questions. Only first three answers will be evaluated.

 $9 \times 3 = 27$

1 (a) State and prove the Laurent's Theorem.

[1+4] [4]

[1+4]

[4]

(b) Prove that $e^{z+\frac{1}{z}} = \sum_{-\infty}^{\infty} a_n z^n$, where $a_n = \frac{1}{\pi} \int_0^{\pi} e^{2\cos\theta} \cos(n\theta) d\theta$ and $a_{n-1} - a_{n+1} = na_n$.

- 2 (a) State and prove Riemann's Theorem for a removable singularity.
 - (b) Evaluate $\int_{0}^{\infty} \frac{x^{\alpha 1}}{1 + x^3} dx$, $0 < \alpha < 3$ by the method of contour integration.
- 3 (a) State and prove Argument Principle. Why is it called the Argument Principle? [1+3+2]
 - (b) Find the number of roots of $f(z) = z^{10} 6z^9 3z + 1$ which lie interior to the unit circle |z| = 1.
- 4 (a) Find the maximum modulus of the function f(z) = z 3i on $|z| \le 2$. [3]
 - (b) State and prove Schwarz lemma. [2+4]
- Let f(z) be analytic in a domain D ($D \subset \mathbb{C}$). If at each point $z \in D$, $f'(z) \neq 0$, then [9] show that the mapping w = f(z) is conformal in D.

Group - B (Real Analysis - II)

(Marks: 18)

Answer any **two** questions. Only **first two** answers will be evaluated.

 $9 \times 2 = 18$

1 State and prove monotone convergence theorem.

[2+7]

2 (a) Let $f: [0,1] \to \mathbb{R}$ be a function, defined by

[4]

 $f(x) = \begin{cases} 7x, & \text{if } x \text{ is rational} \\ 9x^2, & \text{if } x \text{ is irrational} \end{cases}.$

Evaluate $(L) \int_0^1 f \, dx$.

(b) Let E be a measurable subset of \mathbb{R} and $f, g : E \to \mathbb{R}^*$ be two measurable functions such that $|f| \leq g$ a.e. on E, where $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$. If g is Lebesgue integrable on E, then prove that f is Lebesgue integrable on E.

Let $f(x) = \begin{cases} \pi + x, & \text{if } -\pi \le x < 0, \\ \pi - x, & \text{if } 0 \le x < \pi, \end{cases}$ and $f(x + 2\pi) = f(x)$. Find the Fourier series of f in $[-\pi, \pi]$ and hence find $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.