Internal Assessment M.A./ M.Sc. Semester-II Examination,2019(DDE) Subject: Mathematics (Old Pattern)

Use separate answer-sheet for each paper (Answer of each paper should be limited to one A4 size page) Notations and symbols have their usual meanings

Time: 2 Hours

Full Marks: 20

Paper : MCG 201 Unit-I (Complex Analysis-II)

Answer any one question. Only first answer will be evaluated.

- 1. Prove that the function $\frac{z}{(1-z)^2}$ is simple within the unit circle.
- 2. Show that the transformation $\omega = \frac{1+z^2}{1-z^2}$ maps the interior of the positive quadrant of the unit circle in the *z*-plane conformally on the interior of the positive quadrant of the ω -plane.

Unit- II (Real Analysis-II)

Answer any one question. Only first answer will be evaluated.

- 1. Evaluate $L \int_0^1 f dx$, where $f: [0,1] \to \mathbb{R}$ is given by f(x) = x if x is rational $= x^2$ if x is irrational
- 2. Let f be a measurable function on a measurable set E. If f is Lebesgue integrable on E, then prove that f is real valued almost everywhere on E.

Paper : MCG 202 Unit- I (Partial Differential Equations)

Answer any one question. Only first answer will be evaluated.

- 1. Find the equation of the Monge cone for the Partial Differential Equation $p^2 + q^2 = 1$.
- 2. Verify thet the equation $z(z + y^2)dx + z(z + x^2)dy xy(x + y)dz = 0$ is integrable.

Unit- II (Differential Geometry)

Answer any **one** question. Only **first** answer will be evaluated.

- 1. Define curvilinear coordinate system in E^3 . Obtain a necessary and sufficient condition for a curvilinear coordinate system to be orthogonal. (1+1)
- 2. Prove that the intrinsic derivative of an invariant coincides with its total derivative.

Paper : MCG 203 Unit- I (Operations Research-II)

Answer any one question. Only first answer will be evaluated.

- 1. Mention the principal assumptions made while dealing with sequencing problem .
- 2. In view of network technique, explain the term : total float, free float, independent float.

 $1 \times 2 = 2$

 $1 \times 3 = 3$

 $1 \times 3 = 3$

 $1 \times 2 = 2$

 $1 \times 3 = 3$

Unit- II (Principle of Mechanics-II)

Answer any one question. Only first answer will be evaluated.		
1. 2.	State the postulates of special theory of relativity .(a) Under what conditions do the special Lorentz transformation reduce to Galilean transformation .(b) Write down the expression of coriolis force .	(1+1)
	Paper : MCG 204 Unit- I (Computer Programming)	
Ansv	wer any one question. Only first answer will be evaluated.	1×3=3
1. 2.	What are the differences between function subprogram and subroutine subprogram. Write a <i>C</i> -program for finding the real roots of a quadratic equation $ax^2 + bx + c = 0$.	

Unit- II (Continuum Mechanics-I)

Answer any one question. Only first answer will be evaluated.		1×2=2
1.	. (a) State the principle of balance of angular momentum .	
	(b) What do you mean by a rigid body motion.	(1+1)
2.	(a) Write down the equation of continuity in Eulerian form .	
	(b) State Reynold's transport theorem for a material volume property.	(1+1)