The University of Burdwan M.Sc. 3rd Semester Examination, 2020(CBCS) Subject: Computer Science and Application Paper: MCSA-301 (Theory of Computations) Full Marks: 40 Time: 2 Hours

Answer any eight questions (All questions contain equal marks) (8 X 5 = 40)

- 1. $E \rightarrow E + E$ $E \rightarrow id$ $E \rightarrow E * E$ $id \rightarrow a/b/c$ a=2, b=3, c=4Check whether the grammar is ambiguous or not for: a+b*c.
- 2. N={S} T={a,b} P={ 1. S \rightarrow aSb 2. S \rightarrow ab 3. S \rightarrow SS} S is the Start Symbol. Generate the language using this grammar.
- **3.** N={S,B} T={a,b,c} P={1. S aSBc 2. S abc 3. cB Bc 4. bB bb} and S is the start symbol. What is the language generated by the grammar? Prove by induction hypothesis.
- 4. Consider a grammar which will generate FORTRAN identifier.
- 5. $S \rightarrow AB$ $A \rightarrow aAb$ $A \rightarrow ab$ $B \rightarrow bB$ $B \rightarrow b$ $C \rightarrow cCd$ $C \rightarrow cCd$ $C \rightarrow cCd$ $C \rightarrow cCd$ $C \rightarrow cCd$ $C \rightarrow cCd$

S is the start symbol. Remove the useless symbols/productions from the above grammar.

6. L is a set of strings consisting of at least one **a** and exactly two **b**. Draw the DFA of the language over $\Sigma = \{a, b\}$.

7. Prove that L= { a^i : i is perfect square} over Σ = {a} is not a regular language.

8. Draw a TM for the language $L = \{a^n b^n c^n : n \ge 0\}$ over $\Sigma = \{a, b, c\}$.

9. Draw a PDA for the language L = {ww^r: w belongs to Σ^* } over Σ = {a,b}.

10. Define Finite Automata and Transition Diagram in brief.