,

Subject: Mathematics [New Syllabus]

Course: MMATAME 306-1 (Boundary Layer Flows & Magnetohydrodynamics-I)

Time: 2 Hours Full Marks: 40		
C	The figures in the margin indicate full marks. andidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]	
Answer an	ny <i>four</i> questions. Only <i>first four</i> answers will be evaluated. $4 \times 10 =$	40
1. (a)	Obtain the vector invariant form of Navier-Stokes' equations for viscous incompressible fluid.	[5]
(b)	Discuss Stokes' second problem and formulate the problem mathematically.	[2+3]
2.	The approximate velocity distribution in the boundary layer flow over a flat plate is	[5+5]
	given by $u = U(1 - e^{-\eta}), \eta = \frac{y}{\delta}$. Calculate wall skin-friction and displacement	
	thickness	
	Here, U is the main stream velocity, η is the similarity variable, δ denotes the	
	boundary layer thickness.	
3.	Briefly discuss the Blasious flow problem. Formulate the problem mathematically and obtain the self-similar equation with the appropriate boundary conditions for this problem.	[2+3+5]
4.	Write short notes on any two of the following:	[5+5]
	(i) Boundary layer thickness	
	(ii) Stokes' paradox	
	(iii) Two layer theory of turbulence	
5.	Describe the steady boundary layer flow of a viscous fluid in a converging channel between two plane walls. Derive the self-similar equation for such flow. Also, obtain the velocity components for this flow.	[2+4+4]
6.	Explain 'closure problem' in turbulence. What is meant by 'mixing length theory'? Describe, in detail, the factors that affect the transition from laminar to turbulence.	[3+2+5]

,

Subject: Mathematics [New Syllabus]

Course: MMATAME 306-2 (Turbulent Flows - I)

Time: 2 HoursFull Marks: 40		
	The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]	
Answe	r any <i>four</i> questions. Only <i>first four</i> answers will be evaluated. 4×10^{-1}	= 40
1.	State Stokes' hypothesis for an isotropic fluid continuum. Establish Stokes' law of friction for moving fluid.	[4+6]
2.	Write the basic principles for boundary layer flows. Obtain the two-dimensional incompressible Prandtl boundary layer equations for flow past a plate.	[2+8]
3.	Discuss briefly boundary layer flow structure due to spread of a two-dimensional jet. Set up equations of this jet flow. Determine self-similar velocity components of this jet flow.	[3+3+4]
4.	Why do we need statistical description of turbulence? Explain briefly temporal, spatial and ensemble averages for turbulent velocity components. Show that the mean of fluctuating velocity components are zero.	[3+4+3]
5.	Write Reynolds' decomposition principle for flow variables in turbulence. Using this principle, establish the Reynolds' Average Navier-Stokes' equations.	[2+8]
6.	 Describe three following important zones in turbulent flow near a wall: (i) laminar sub-layer zone, (ii) buffer zone, (iii) turbulent zone. 	[6+4]

Establish the logarithmic velocity distribution in the turbulent zone.

,

Subject: Mathematics [New Syllabus]

Course: MMATAME 306-3 (Space Sciences-I)

Time	Time: 2 Hours Full Marks: 40		
		The figures in the margin indicate full marks.	
	Ca	ndidates are required to give their answers in their own words as far as practicable.	
		[Notation and symbols have their usual meaning]	
Ansv	ver any	<i>four</i> questions. Only <i>first four</i> answers will be evaluated. $4 \times 10 = 40$	
1.		Show that the equation $\frac{\partial \vec{B}}{\partial x} = -\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ is not invariant under Galilean transformation.	[10]
2.		For Michelson Morley's experiment, show that	[10]
		time required to travel the vertical direction = $\frac{2L}{c}(1 + \frac{v^2}{2c^2})$,	
		where <i>L</i> is the length of the interferometer arm.	
3.	(a)	Show that the quantity $S^2 = c^2 t^2 - x^2$ is a Lorentz invariant.	[5]
	(b)	Explain the concept of light cone.	[5]
4.		Show that a time like vector cannot be orthogonal to another time like vector.	[10]
5.	(a)	Show that moon feels much attractive force by the sun than earth.	[5]
	(b)	What is a main sequence star? Explain briefly.	[5]
6.	(a)	Describe different time spans of different elements burning at the core of a massive	[5]
	(b)	When does a neutron star form a pulsar?	[5]
		M.A./M.Sc. Semester III Examination, 2020 (CBCS)	
		Subject: Mathematics [New Syllabus]	
		Course: MMATPME 306-1 (Advanced Functional Analysis-I)	
Time: 2 HoursFull Marks: 40			

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Ansv	wer ar	by <i>four</i> questions. Only <i>first four</i> answers will be evaluated.	4×10=4	0
1		State and prove Krein Milman Theorem.		[2+8]
2	(a)	Define a local base in a topological vector space. Prove that every topological v	/ector	[1+4]
		space has a balanced local base.		
	(b)	Define a strictly convex normed linear space. If X is a strictly convex normed $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	linear	[2+3]
		space such that for $x, y \in X$, $ x + y = x + y $ holds then show that $x = c$.	y for	
3	(a)	some scalar c. Define a locally convex topological vector space. Is any topological vector sp	ace a	[2+3]
5	(u)	locally convex topological vector space? Justify your answer.	ucc u	[2:0]

- (b) Prove that in a locally convex topological vector space X, the balanced, closed [5] convex neighbourhoods of θ, the zero vector in X form a neighbourhood base of θ in X (supporting results may be assumed).
- 4 State and prove Kolmogorov theorem.

,

- 5 (a) When is a topological vector space said to be complete? Prove that a complete [2+3] subset of a Hausdorff topological vector space is closed.
 - (b) When is a filter said to be convergent to a point in a topological vector space? Show [2+3] that a closed subset of a complete topological vector space is complete.
- 6 Define a Bornological space. Obtain a necessary and sufficient condition for a [2+8] locally convex topological vector space to be Bornological?

M.A./M.Sc. Semester III Examination, 2020 (CBCS)

Subject: Mathematics [New Syllabus]

Course: MMATPME 306-4 (Rings of Continuous Functions - I)

Time	Time: 2 Hours Full Marks: 40		
	Ca	The figures in the margin indicate full marks. Indidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]	
Answer any <i>four</i> questions. Only <i>first four</i> answers will be evaluated. $4 \times 10 = 40$)	
1	(a)	Show that every zero set is a G_{δ} set. Show that in a Tychonoff space, every compact G_{δ} set is a zero set.	[2+3]
	(b)	Show that for $f \in C(X)$, there exists a unit $u \in C^*(X)$ such that $fu \in C^*(X)$.	[5]
2		Show that a space is pseudocompact if and only if $f[X]$ is compact for every $f \in C^*(X)$.	[10]
3	(a)	If X is basically disconnected, then show that for every $f \in C$, there exists a unit u of C such that $f = u f $.	[5]
	(b)	Show that for any $f \in C(X)$, $f^{\frac{1}{3}} \notin (f)$, for any infinite space X.	[5]
4		Show that a z-ideal I is prime in $C(X)$ if and only if every member of $C(X)$ does not change sign on some member of $Z[I]$.	[10]
5	(a)	Show that in $C(X)$, if the ideal generated by $f, g \in C(X)$ is a z-ideal, then it is a principal ideal.	[5]
	(b)	Let <i>X</i> be a Tychonoff space. Let $\{V_{\alpha}\}$ be a family of disjoint sets in <i>X</i> with non-empty interiors, and such that for each index α , the set $\bigcup_{\sigma \neq \alpha} V_{\sigma}$ is closed. Show that any set <i>D</i> formed by selecting one element from the interior of each V_{α} is c-embedded in <i>X</i> .	[5]
6		Show that a space X is a p – space if and only if $C(X)$ is a regular ring.	[8+2]

[2+8]

M.A./M.Sc. Semester III Examination, 2020 (CBCS) Subject: Mathematics [New Syllabus] Course: MMATPME 306-5 (Advanced Complex Analysis -

Course: MMATPME 306-5 (Advanced Complex Analysis - I)

Full Marks: 40

[2+8]

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any *four* questions. Only *first four* answers will be evaluated. $4 \times 10 = 40$

Find the abscissa of convergence C and the abscissa of absolute convergence A of the following Dirichlet series:

a)
$$\sum_{n=0}^{\infty} e^{-n^3} e^{-zn^2}$$
, [5+5]
b) $\sum_{n=1}^{\infty} \frac{1}{n^2} e^{-z \ln n}$.

2 State and prove the theorem of Borel and Caratheodary.

- 3 Derive the formula for the type σ of an entire function f of fine order ρ in terms of [10] Taylor's coefficients of f(z).
- 4 Suppose that z_1, z_2, \dots, z_m are distinct A_0 points of an entire function f of order ρ , where z_j is of order k_j ($j = 1, 2, \dots, m$). Prove that ρ is an integer and f(z) is of the form [10]

$$f(z) = A_0 + (z - z_1)^{k_1} (z - z_2)^{k_2} \cdots (z - z_m)^{k_m} e^{P(z)}, \text{ where } P(z) \text{ is a polynomial of degree}$$

$$\rho.$$

5

6

Time: 2 Hours

1

- Find an order ρ and the type σ of the following entire functions:
 - a) $e^{z} \cos z$; b) $z^{2}e^{2z} - e^{3z}$. [5+5]

State and prove Hadamard's Factorization theorem. [2+8]

Subject: Mathematics [New Syllabus]

Course: MMATPME306-6 (Measure and Integration-I)

Time: 2 Hours Full Marks: 40 The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any *four* questions. Only *first four* answers will be evaluated. $4 \times 10 = 40$

- 1 (a) Give an example with proper justification of an algebra which is not a σ -algebra. [4]
 - (b) Let *E* be a countable class of subsets of $X (\neq \emptyset)$. Prove that R(E) is countable, where [6] R(E) is the ring generated by *E*.
- 2 (a) Let μ be a measure on a ring R of subsets of $X (\neq \emptyset)$ and $E \in R$. If $E_1, E_2, \dots, E_n \in R$ [3] and $E \subset \bigcup_{i=1}^n E_i$, then prove that $\mu(E) \leq \sum_{i=1}^n \mu(E_i)$.
 - (b) Let μ be a finite, non-negative, additive set function defined on a ring R of subsets of [7]
 X (≠ Ø). If μ is either continuous from below at every E ∈ R or continuous from above at Ø, then prove that μ is a measure on R.
- 3 (a) Let μ be a measure on a ring R and S be the class of all μ* measurable sets in H(R). [5]
 Prove that S(R) ⊂ S, where μ* is the outer measure on the hereditary σ-ring H(R) induced by the measure μ and S(R) is the σ-ring generated by R.
 - (b) Let (X, S, μ) be a measure space and $f: X \to [0, \infty)$ be a measurable simple function. If [5] $E, F \in S$ and $E \cap F = \emptyset$, then prove that $\int_{F \cup F} f \, d\mu = \int_{F} f \, d\mu + \int_{F} f \, d\mu$.
- 4 Let (X, S, μ) be a finite measure space and f_n (n = 1, 2, ...), f be real valued [10] measurable functions defined on X such that $f_n \to f a. e.$. Prove that for any $\delta > 0$, there exists a measurable set F such that $\mu(F) \le \delta$ and $\{f_n\}_{n \in \mathbb{N}}$ converges to f uniformly on X - F.
- 5 (a) Let (X, S) be a measurable space, E be a measurable subset of X and for each $n \in [3]$ $\mathbb{N}, f_n: E \to \mathbb{R}^*$ be a measurable function. Prove that $\sup_n f_n$ is measurable. (Here $\mathbb{R}^* = \mathbb{R} \cup \{\infty, -\infty\}$).
 - (b) Let (X, S, μ) be a measure space, f_n (n = 1, 2, ...), g_n (n = 1, 2, ...), f be real valued [4] measurable functions defined on X such that f_n → f in measure and f_n = g_na.e. on X. Prove that g_n → f in measure.
 - (c) Let (X, S) be a measurable space, E be a measurable subset of X and $f: E \to \mathbb{R}^*$ be a [3] measurable function. Show that |f| is measurable.
- 6 (a) Let (X, S, μ) be a measure space and $\varphi, \psi : X \to [0, \infty]$ be measurable functions such [5] that $\varphi \leq \psi$. Prove that for each $E \in S$, $\int_{E} \varphi \, d\mu \leq \int_{E} \psi \, d\mu$.

(b) Let (X, S, μ) be a measure space and $f: X \to \mathbb{R}^*$ be a measurable function on X. If f is [5] integrable on X, then prove that f is finite valued a. e. on X.

,