M.A./M.Sc. Semester III Examination, 2020 (CBCS) Subject: Mathematics [New Syllabus] Course: MMATG304 (Theory of Electro Magnetic Fields and Relativity)

,

Time: 2 Hours Full Marks:					
		The figures in the margin indicate full marks.			
	Candidates are required to give their answers in their own words as far as practicable.				
		[Notation and symbols have their usual meaning]			
Ansv	ver an <u>y</u>	<i>y four</i> questions. Only <i>first four</i> answers will be evaluated. $10 \times 4 = 40$			
1.		Derive the expression of energy stored in a magnatostatic field in vacuum.	[10]		
2.		Show that solving the Maxwell's equations in vacuum is equivalent to solving an	[10]		
		inhomogeneous wave equation with a source term.			
3.		Show that at the surface of jump discontinuity of the electrostatic field vector E ,	[10]		
		tangential component of <i>E</i> is continuous.			
4.		Show that the potential at a point due to an electrically polarized substance is same as	[10]		
		we should obtain if we were to suppose that there was a volume distribution of charge			
		of density D_1 throughout the dielectric, and a surface charge distribution of density D_2			
		on the boundary of the substance, where D_1 and D_2 have to be defined by you.			
5.	(a)	Derive the Lorentz transformations.	[8]		
	(b)	Why do we consider linear transformations to construct Lorentz transformations?	[2]		
6.	(a)	Prove that any four vector orthogonal to a space like vector may be a time like, light	[5]		
		like or space like vector.			
	(b)	Show that norm of any four vector is equal to c^2 , where c is the speed of light.	[5]		

M. Sc. Semester III Examination, 2020 (CBCS) Subject: Mathematics [New Syllabus] Course: MMATG304 (Introduction to Manifolds)

Гіme: 2 Hours	Full Marks: 40	
The figures in the margin indicate full marks.		
Candidates are required to give their answers in their own words as far as practicable		
[Notation and symbols have their usual meaning.]		

Answer any four questions. Only first four as	wers will be evaluated. $10 \times 4 = 40$
---	--

- (a) Define a smooth manifold of dimension n. [3]
 (b) Show that the *n*-sphere Sⁿ = {(x¹, x², ..., xⁿ⁺¹) ∈ ℝⁿ⁺¹: Σⁿ⁺¹_{i=1}(xⁱ)² = 1} is [7] an *n*-dimensional smooth manifold.
- 2 (a) Define push forward map and pullback map of a smooth map f between two [2+2+2] smooth manifolds. Also write the relation between them.

(b) Let $f: M \to N$ be a smooth map where M and N are two smooth manifolds of [4] dimension *m* and *n* respectively. Prove that $f^*(gw) = (gof)f^*w$ for any $g \in C^{\infty}(N)$ and $w \in T^*N$. Let *M* be a smooth manifold. Show that [fX, gY] = fg[X, Y] + f(Xg)Y - f(Xg)Y(a) [3] g(Yf)X for any $X, Y \in \chi(M), f, g \in C^{\infty}(M)$. (b) Let *M* and *N* be two smooth manifolds and $f: M \to N$ be a smooth map. If X_i [4] and Y_i , i = 1, 2 are f-related vector fields on M and N respectively then show that $[X_1, X_2]$ and $[Y_1, Y_2]$ are *f*-related. Compute [X, Y], where $X = x^{1}x^{2}\frac{\partial}{\partial x^{1}}$ and $Y = x^{2}\frac{\partial}{\partial x^{2}}$. (c) [3] Define a distribution on a smooth manifold. When is a distribution said to be (a) [2+1]involutive. Show that every integrable distribution is involutive. [3] (b) Find the integral curves of the vector field $X = y \frac{\partial}{\partial x} + y \frac{\partial}{\partial v} + 2 \frac{\partial}{\partial z}$ on \mathbb{R}^3 . (c) [4] Obtain a necessary and sufficient condition so that the 1-forms $\omega_1, \omega_2, \cdots, \omega_r$ (a) [5] are linearly dependent.

3

4

5

- (b) Compute the exterior product $(7du^1 + 4du^2) \wedge (3du^1 + 2du^2)$. [2]
- (c) Let *M* be a smooth *n*-manifold and $f \in C^{\infty}(M)$. Prove that [3] $d(f\omega) = df \wedge \omega + f d\omega \text{ for any k-form } \omega \text{ on } M.$
- 6 (a) Define a Lie group. Let ω be a left invariant k-form on a Lie group G. Show [2+2] that d ω is a left invariant (k+1)-form.
 - (b) Let G be a Lie group and f: G → G be a diffeomorphism such that f(a) = [6] a⁻¹, ∀ a ∈ G. Prove that ω is a left invariant form if and only if f*ω is right invariant form.