M.A./M.Sc. Semester III Examination, 2020 (CBCS)

,

Subject: Mathematics [New Syllabus]

Course: MMATMIE308-1 (Introduction to Operations Research)

Time	e: 1 He	Full Marks: 20	
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notations and symbols have their usual meanings]			
Answer any <i>two</i> questions. Only <i>first two</i> answers will be evaluated. $10 \times 2 = 2$			
	(a)	Show that The set of all feasible solutions to a linear programming problem is a closed	[5]
1	(b)	Examine whether $x_1^2 + x_2^2 \le 25$ is a convex set or not.	[5]
2	(a)	What do you mean by saddle point of two persons zero sum game?	[2]
	(b)	Write a brief description about payoff matrix of two persons zero sum game.	[2]
	(c)	Solve the game whose payoff matrix is given by	[6]
		Player B	
		$B_{1} B_{2} B_{3} B_{4}$ $Player A \begin{array}{cccc} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \\ -2 & 2 & 0 \end{array}$	
3	(a)	What do you mean by stationary point?	[2]
	(b)	Write a brief description about Lagrange multiplier method.	[2]

(c) Solve the following problem by Lagrange multiplier method:

[6]

Maximize $z = x_1^2 - 10x_1 + x_2^2 - 6x_2 + x_3^2 - 4x_3$ subject to $x_1 + x_2 + x_3 = 7$.