M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Applied Stream) Paper: MAG301 (Methods of Applied Mathematics-I)

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any five questions. Only first five answers will be evaluated. $9 \times 5 = 45$ 1. If f(x) is piecewise continuously differentiable and absolutely integrable function, [5] (a) then prove that F(k), Fourier transform of f(x), is bounded and continuous in $0 < k < \infty$. Find the Fourier transform of $f(x) = x \exp(-a|x|)$, a > 0. (b) [4] 2. Let f(x) be a piecewise continuous function of exponential order α on $[0,\infty)$. (a) [3] Prove that Laplace transform of $\int_t^{\infty} \frac{f(x)}{x} dx$ is $\frac{1}{s} \int_0^s F(t) dt$, where F(s) is the Laplace transform of f(x). (b) Use the Convolution theorem to find the inverse Laplace transforms of F(s) =[6] $\frac{1}{s^2(s^2+a^2)}$ (a) Solve the integral equation, $y(x) = x + \lambda \int_0^{2\pi} |\pi - t| \sin x \ y(t) dt$. 3. [4] (b) Solve the following integral equation, $\int_1^x \frac{y(t)dt}{(\cos t - \cos x)^{\frac{1}{2}}} = x, 1 < x < 2.$ [5] (a) Solve, $y(x) = \frac{5x}{6} - \frac{1}{9} + \frac{1}{3} \int_0^1 (x+t)y(t)dt$ by the method of successive 4. [5] approximations. (b) Let $k_m(x,t)$ be the iterated kernel of the integral equation y(x) = f(x) + f(x)[4] $\lambda \int_{a}^{b} k(x,t)y(t)dt$. Prove that the series for resolvent kernel $R(x,t;\lambda) =$ $\sum_{m=1}^{\infty} \lambda^{m-1} K_m(x,t)$ is absolutely and uniformly convergent for all values of x and t in the circle $|\lambda| < \frac{1}{||K||}$, where $||k|| = \left(\int_a^b \int_a^b |K(x,t)|^2 dx dt\right)^{\frac{1}{2}}$. Prove that the adjoint operator A^* of a bounded operator A on a Hilbert space is [3+2+1=6]5. (a) bounded. Also, show that $||A|| = ||A^*||$ and $||A^*A|| = ||A||^2$. If A is a bounded self-adjoint operator on a Hilbert space, then prove that the (b) [3] spectral radius of A, r(A) = ||A||. 6. Using Hilbert-Schmidt theorem, find the solution of the integral equation, [9]

$$y(x) = 1 + \frac{3}{2} \int_{0}^{\pi} \cos(x+t) y(t) dt.$$

- 7. (a) Does pointwise convergence imply convergence in the sense of generalized [3+2] function? Justify your answer. Is the converse true? Support your answer.
 - (b) Find the differentiation of |x| in the sense of generalized function.

[2]

(c) Find the Fourier transform of Dirac delta function $\delta(x + a)$ in the sense of generalized function.

M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Pure Stream) Paper: MPG301

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Group-A (Modern Algebra-II) (Marks: 27)

Answer any three questions. Only first three answers will be evaluated. $9 \times 3 = 27$	
1. (a) Giving a suitable example, show that the external direct product of two infinite cyclic groups is not cyclic.	[4]
(b) Let G be a group with an identity element e . Let H and K be two normal subgroups	
of G. Show that G is an internal direct product of H and K if and only if $G = HK$ and $H \cap K = \{e\}$.	[5]
2. (a) Let p be a prime. Prove that every finite p – group is of order p^n for some $n > 0$.	[5]
(b) Determine all non-isomorphic abelian groups of order 5^27^3 .	[4]
3. (a) Let <i>H</i> and <i>K</i> be two subgroups of a group <i>G</i> . Prove that the number of distinct conjugates of <i>H</i> induced by the elements of <i>K</i> is equal to $[K:N_K(H)]$, the index of	[3]
$N_{\kappa}(H)$ in K.	
(b) Let G be a group of order 77 acting on a set S of 20 elements. Show that G must have a fixed point.	[3]
(c) Does there exist a simple group of order 34? Justify your answer.	[3]
4. (a) Determine positive integer n such that \mathbb{Z}_n has no non-zero nilpotent elements.	[3]
(b) Let a, b be two non-zero elements of a unique factorisation domain D. If	
$gcd(a,b) = 1$ and $a \mid c, b \mid c$, then prove that $ab \mid c$ in D, where $c \in D$.	[3]
(c) Show that a polynomial ring $\mathbb{Z}[x]$ is a UFD, but not a PID.	[3]
5. (a) Prove that if R is a Noetherian ring, then so is $R[x]$.	[6]
(b) Show that $f(x) = x^4 - 2x^2 + 8x + 1$ is irreducible in $\mathbb{Q}[x]$.	[3]

Group-B (General Topology-I) (Marks: 18)

Answer any two questions. Only first two answers will be evaluated.	$9 \times 2 = 18$
---	-------------------

- 1. (a) Define a normal space. Is normality a hereditary property? Support your answer. [1+3]
 - (b) Prove that a topological space is completely normal if and only if every subspace of it [5] is normal.
- 2. (a) Let {(X_α, τ_α): α ∈ Λ}, Λ being index set, be a family of topological spaces and (X, τ) [5] be their product space. Prove that a sequence {s_n}_{n∈N} in (X, τ) converges to a point x = (x_α)_{α∈Λ} ∈ X if and only if the sequence {p_α(s_n)}_{n∈N} converges to x_α in the α-th co-ordinate space (X_α, τ_α) for each α ∈ Λ, where p_α: X → X_α is the α-th projection map, α ∈ Λ.
 - (b) Give an example with proper justification of a second countable Frechet compact [4] space which is not countably compact.
- 3. (a) Define a locally compact topological space. Let (X, τ) be a locally compact space, [1+3]
 (Y, σ) be any topological space and f: (X, τ) → (Y, σ) be an open continuous surjection. Prove that (Y, σ) is locally compact.
 - (b) Let $\{S_n, n \in D, \geq\}$ be a net in a topological space (X, τ) . Prove that there exists a [5] filter \mathfrak{F} on X such that if $x \in X$ is a cluster point of the net $\{S_n, n \in D, \geq\}$, then x is also a cluster point of the filter \mathfrak{F} and vice-versa.