M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Applied Stream) Paper: MAG302

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Group-A (Methods of Applied Mathematics-II) (Marks: 27)

Ans	wer an	by three questions. Only first three answers will be evaluated. $9 \times 3 = 27$	
1.	(a)	Write down the four properties satisfied by Riemann Green's functions for a hyperbolic	[2]
		partial differential equation.	
	(b)	Obtain the solution of $\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{x+y}$ such that $z = 0, p = \frac{2y}{x+y}$ on $y = x$ using the Riemann	[7]
		Green's function.	
2.	(a)	State and prove the maximum-minimum theorem for an elliptic equation.	[5]
	(b)	Can a Neumann problem be converted into a Dirichlet problem? Justify your answer.	[4]
3.	(a)	Find the temperature in a laterally insulated bar of length a whose ends are insulated	[5]
		assuming that the initial temperature is $f(x) = \begin{cases} x \text{ if } 0 < x \le a/2 \\ a - x \text{ if } \frac{a}{2} < x < a \end{cases}$.	
	(b)	Find the Green's function for the equation $\frac{d^2u}{dx^2} = f(x), 0 \le x \le 1$ subject to the	[4]
		boundary conditions $u(0)-u'(0)=0$ and $u(1)+u'(1)=0$.	
4.	(a)	Illustrate an example on the fact that the solution of a wave equation should be continuously dependent on its initial conditions	[5]
	(b)	State and find the solution of $D^2 \dot{\lambda}$ lembert's problem for wave equation	[4]
	(0)	state and find the solution of D Atchibert's problem for wave equation.	[4]
5.	(a)	How will you find the type of a second order partial differential equation for more than	[5]
		two independent variables?	
	(b)	Set an example of ill-posed partial differential equation.	[4]

Group-B (Theory of Electro Magnetic Fields) (Marks: 18)

Answer any **two** questions. Only **first two** answers will be evaluated. $9 \times 2 = 18$

1. Write down Biot-Savat law. Hence obtain the divergence and the curl of the [3+3+3] magnetic field vector.

- 2. Using Maxwell's equations prove that empty space supports the propagation of [9] electromagnetic waves at a constant speed, 3.0×10^8 m/s.
- 3. Define electromagnetic potentials. Hence explain the concept of gauging of those [9] potentials.

M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Pure Stream) Paper: MPG302

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Group-A (Graph Theory) (Marks: 36)

Answer any four questions. Only first four answers will be evaluated. $9 \times 4 =$				
1.	(a)	Let G be a connected graph. Show that every walk in G has a path.		[5]
	(b)	Prove that a connected graph is semi-Eulerian if and only if there exist exa	ctly	[4]
		two vertices of odd degree.		
2.	(a)	Let G be a simple graph with n vertices and k components. Show that	the	[5]
		maximum number of edges in G is $\frac{(n-k)(n-k+1)}{2}$.		
	(b)	What do you mean by adjacency matrix of a digraph? Illustrate with	an [2+2]
		example.		
3.	(a)	State and prove 5-colour theorem.	[1+4]
	(b)	Define bipartite graph. Show that every bipartite graph is 2-chromatic.	[2+2]
4.	(a)	Let G be a connected planar graph with e edges, n vertices and f faces. Pr	ove	[5]
		that $n - e + f = 2$.		
	(b)	Let $G(V,E)$ be a simple connected graph with <i>n</i> vertices such that		[4]
		$d(v) \ge \frac{n}{2}, \forall v \in V$. Prove that G is Hamiltonian.		
5.	(a)	When is a graph said to be minimally connected? Show that a graph G is a	tree [1+4]
		if and only if G is minimally connected.		
	(b)	State Kuratowski Theorem.		[2]
	(c)	Give an example of two graphs that are isomorphic to each other.		[2]
6.	(a)	State and prove Konig theorem.		[5]
	(b)	Prove that every vertex of an Eulerian graph is of even degree.		[4]

Group-B (Set Theory-I) (Marks: 9)

Answer any **one** question. Only **first one** answer will be evaluated. $9 \times 1 = 9$

- 1 (a) State Axiom of Choice and Zorn's lemma. Prove that Axiom of Choice implies Zorn's [5] lemma.
 - (b) When is a set said to be well ordered? State Well Ordering theorem. Show that Well [4]Ordering theorem implies Axiom of Choice.
- 2 Define the ordering ≤ on the class of cardinal numbers. State and prove Schroder- [9] Bernstein theorem.