M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Applied Stream)

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MAS304 (Viscous Flows, Boundary Layer Theory and Magneto Hydrodynamics-I)

Answer any five questions. Only first five answers will be evaluated. $9 \times 5 = 45$					
1.	Write Stokes' hypothesis for continuous flow in fluid medium. Establish the	[3+6]			
	relation $\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij} + \lambda e_{kk}\delta_{ij}$, $i, j = 1, 2, 3$ and λ, μ are constants.				
2.	Determine the velocity distribution in the flow of an incompressible viscous	[9]			
	fluid due to the motion of an infinite plate which oscillates harmonically with a				
	given velocity $U\cos(nt)$.				
3.	Obtain two-dimensional Prandtl boundary layer equations of an incompressible	[9]			
	fluid for flow past a flat plate.				
4.	Derive Karman's integral equation for steady two-dimensional boundary layer	[9]			
	flow.				
5.	Discuss the flow of viscous incompressible fluid in the neighborhood of a	[9]			
	stagnation point in a plane.				
6. (a)	Give the definition of flow separation. Write its criteria.	[4]			
(b)	Define Reynolds number (Re) for viscous fluid motion. Write its significances	[5]			
	when the values of Re are small and large.				
7. (a)	Define energy thickness parameter in a boundary layer flow. Give its physical significance.	[4]			
(b)	A plate of length l is placed in an uniform stream U in the direction of its	[5]			
	length. Compute the boundary layer thickness for the velocity				
	$u = U \sin(\pi \eta / 2)$, where $\eta = y / \delta$.				
M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE)					
Subject: Mathematics (Pure Stream)					

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MPS304 (Differential Geometry of Manifolds-I)

,

Answer any five questions. Only first five answers will be evaluated.			$9 \times 5 = 45$	
1.		Define a smooth manifold. Show that the <i>n</i> -sphere S^n is an <i>n</i> -dimensional smoot manifold.	h [3+6]	
2.	(a)	Define tangent space at a point of a smooth manifold and obtain a basis such a	[2+4]	
		space.		
	(b)	Determine the integral curve for the vector field $X = x^2 \frac{\partial}{\partial x^1} - x^1 \frac{\partial}{\partial x^2}$ in \mathbb{R}^2 .	[3]	
3.	(a)	Let <i>M</i> be a smooth manifold of dimension <i>n</i> and <i>X</i> , <i>Y</i> $\in \chi(M)$. Define [<i>X</i> , <i>Y</i>]	[1+3+3]	
		and derive its local expression. Also show that $[X, Y] \in \chi(M)$.		
	(b)	Is the map $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ a chart? Justify your answer.	[2]	
4.	(a)	Define one-parameter group of differentiable transformations. Can a tangent	nt [2+3]	
		vector field X on a smooth manifold M determine a one-parameter group of	of	
		transformations? Give reasons.		
	(b)	Let $f: M \to N$ be a smooth map, where M and N are two smooth manifolds. For	or [4]	
		any r-form on N, show that $f^*(d\omega) = d(f^*\omega)$, where f_* and f^* are the	ie	
		pushforward and pullback map of f and d denotes the exterior differentiation.		
5.	(a)	Let M and N be two smooth manifolds with $\dim M = m$ and $\dim N = n$ are	nd [1+3]	
		$f: M \to N$ be a smooth map. When f is said to be an imbedding?		
		If (M, f) is a submanifold of N and M is compact then show that $f: M \to N$ is	a	
		regular imbedding.		
	(b)	Prove that the map $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\varphi(x, y, z) = (e^{2y} + e^{2z}, e^{2x})$	- [5]	
		e^{2y} , $x - y$) is a C^{∞} -diffeomorphism.		
6.	(a)	Define principal fibre bundle, linear frame bundle and associate principal	al [6]	
		bundle.		
	(b)	Let $X = xy \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial z}$ be a vector field on \mathbb{R}^3 and $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by	y [3]	
		$f(x, y, z) = x^2 y$. Compute $(fX)_{(1,1,0)}$ and $(Xf)_{(1,1,0)}$.		
7.	(a)	Prove that Lie algebra of the Lie group G is isomorphic to T_eG , $e \in G$ is the	[5]	
		identity of G.		
	(b)	Deduce Maurer-Cartan structure equation of a Lie group G .	[4]	
Paper: MPS304 (Advanced Functional Analysis-I)				

Answer any five questions. Only first five answers will be evaluated. $9 \times 5 = 45$ 1.Define a topological vector space. If X is a topological vector space then [2+2+2+3]prove the following:

- (i) If Y is a subspace of X then so is \overline{Y} .
 - (ii) If *E* is a bounded subset of X then so is \overline{E} .
 - (iii) If *C* is a convex subset of *X*, then interior of C and closure of *C* are also convex sets in *X*.

2.	(a)	Let X be a topological vector space. For $a \in X$, prove that the operator	[2+2]
		$T_a: X \to X$ defined by $T_a(x) = a + x$ is a homeomorphism. Hence prove that	
		sum of two open sets in X is also an open set in X.	
	(b)	When is a topological vector space said to be locally compact? Prove that a	[1+4]
		locally compact topological vector space is of finite dimension.	
3.		Let X be a topological vector space and K and C are subsets of X such that K	[6+3]
		is compact and C is closed satisfying $K \cap C = \phi$. Show that there exists a	
		neighborhood V of θ , the zero vector of X such that $(K+V) \cap (C+V) = \phi$.	
		Hence show that every topological vector space is Hausdorff.	
4.		When is a Hausdorff topological vector space said to be normable? Prove	[2+7]
		that a topological vector space X is normable if and only if zero vector of X	
		has a convex bounded neighbourhood in X.	
5.	(a)	Define a strictly convex normed linear space. Give an example with	[2+2]
		justifications of a normed linear space which is not strictly convex.	
	(b)	Show that the space $l_p(1 is uniformly convex.$	[5]
6.	(a)	When is a topological vector space said to be locally convex? Show that in a	[2+5]
		locally convex topological vector space, the balanced closed convex	
		neighbourhoods of θ form a fundamental system of neighbourhoods of θ .	
	(b)	Show that every topological vector space is connected.	[2]
7.		Let f be a non-zero linear functional on a topological vector space X . Prove	[9]
		that the following statements are equivalent.	
		(i) f is continuous,	
		(ii) the null space $N(f)$ is closed	

- (ii) the null space N(f) is closed,
- (iii) N(f) is not dense in X and

,

(iv) f is bounded in some neighbourhood of θ .