M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Applied Stream)

,

Time: 2 Hours Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MAS305 (Advanced Operations Research-I)

Answer any five questions. Only first five answers will be evaluated. 9×5 = 45
\n1. (a) State and prove the sufficient condition for optimality of Lagrange multiplier method for [4]
\nsolving constrained optimization problem with equality constraints
\n(b) Solve the following problem by Lagrange multiplier method [5]
\nOptimize
$$
z = x_1^2 - 10x_1 + x_2^2 - 6x_2 + x_3^2 - 4x_3
$$

\nsubject to $x_1 + x_2 + x_3 = 7$
\n2. (a) Show that the Kuhn Tucker necessary conditions for the optimization problem
\nMinimize $f(x)$
\nsubject to $g_1(x) \le 0$, $i = 1, 2, \dots, n$
\nand $h_j(x) = 0$, $j = 1, 2, \dots, l$
\nare also sufficient conditions if $f(x)$ is convex and $g_i(x)$, $i = 1, 2, \dots, m$ are convex
\nfunctions of x and $h_j(x)$ are linear.
\n(b) Use the Kuhn-Tucker necessary conditions to solve the following optimization problem:
\nMaximize $z = 2x_1 - x_1^2 + x_2$
\nsubject to $2x_1 + 3x_2 \le 6$, $2x_1 + x_2 \le 4$ and $3x_1 + 9x_2 = 16$
\n3. (a)
\nIf the iterative sequence $\{x^{(k)}\}$ be defined as
\n $x^{(k+1)} = x^{(k)} + \lambda^{(k)}d^{(k)}$
\nwhere $d^{(k)}$ is given by
\n $d^{(k)} = -M_k \nabla f(x^{(k)})$
\nand also, if $\nabla f(x^{(k)}) \ne 0$ and M_k is positive definite, then show that the iterative procedure possesses
\nprocedure possesses descent property.
\n(b) Using steepest descent method, minimize $f(x) = x_1^2 + x_2^2 + 2gx_1 + 2fx_2 + c$ starting [5]
\nfrom the point $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

- 4. (a) Write down Wolfe's algorithm for solving quadratic programming problem. [4] (b) Use Beale's method for solving the quadratic programming problem: Maximize $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ subject to $x_1 + 2x_2 \le 2$ and $x_1, x_2 \ge 0$ [5]
- 5. (a) Discuss Fibonacci search method for solving one-dimensional non-linear minimization problem. [4]
	- (b) Using Fibonacci search method

$$
\text{Maximize } f(x) = \begin{cases} \frac{2x+3}{6} & \text{for } x \le 3\\ -x+6 & \text{for } x > 3 \end{cases}
$$

in the interval $[-1, 5]$ (consider 6 experimental points).

6. (a) Define Slater's, Karlin's and strict constraint qualifications. [3]

(b) Show that

,

- (i) Slater's constraint qualification and Karlin's constraint qualification are equivalent.
- (ii) The Strict constraint qualification implies Slater's constraint qualification and Kerlin's constraint qualification.
- 7. (a) State and prove Max-flow Min-cut theorem for a network flow problem. [4]

(b) Find the maximum flow in the graph with the following arcs and arc capacities, flow in each arc being non-negative. Arc (v_j, v_k) is denoted as (j, k) . v_a is the source and [5]

 v_b , the sink.

M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Pure Stream)

Time: 2 Hours Full Marks: 45

[5]

[3+3]

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MPS305 (Operator Theory and Applications I)

,

Answer any **five** questions. Only **first five** answers will be evaluated. $9 \times 5 = 45$

- 1. (a) Let *X* be a normed linear space with dual X^{\prime} . Define annihilator of a subset of *X* and X^{\prime} . [5] Show that the annihilator of a subset and the orthogonal complement of that subset coincide in a Hilbert space.
	- (b) Let $T_1: X \to X$ and $T_2: X \to X$ be two bounded linear transformations and T_1 and T_2 be its conjugates respectively where *X* is a normed linear space. Show that (i) $(T_1+T_2)'$ $T_1' + T_2'$ and (ii) $(T_1 T_2)' = T_2' T_1'.$ [4]
- 2. (a) Show that a surjective symmetric operator T: $D_T \rightarrow X$ is self adjoint where D_T is a dense subspace of a complex Hilbert space *X.* [3]
	- (b) Let $T \in B(X, Y)$ where X and Y are complex Hilbert spaces. Show that (i) $(\overline{R(T)})^{\perp}$ $N(T^*)(ii) \overline{(R(T^*))}^{\perp} = N(T)(iii) ||T^*T|| = ||T||^2$ [6]
- 3. (a) Let E_1 and E_2 be two orthogonal projections on the closed subspaces M_1 and M_2 of a complex Hilbert space *X* respectively. Show that the following conditions are equivalent. (i) $E_1 \le E_2$ (ii) $||E_1x|| \le ||E_2x||$ for all $x \in X$ (iii) $M_1 \subset M_2$ (iv) $E_2E_1 = E_1$ (v) $E_1E_2 =$ E_1 . [4]
	- (b) Let E_1 and E_2 be two orthogonal projections on the closed subspaces M_1 and M_2 of a complex Hilbert space *X* respectively. Prove that $E_1 + E_2$ is an orthogonal projection on $\overline{[M_1 \cup M_2]} = M_1 + M_2$ if and only if E_1 is orthogonal to E_2 . [5]
- 4. Let *X* be a complex Hilbertspace and let $A, B \in B(X, X)$ and $AB = BA$. Show that $A \geq 0, B \geq 0$ implies $AB \geq 0$. [9]
- 5. (a) If *A* and *B* are two compact operators defined on a normed linear space *X* into a normed linear space Y, then show that $A + B$ is compact and αA is compact where α is a scalar. [4]
	- (b) Let H_1 and H_2 be two complex Hilbert spaces and let $T: H_1 \rightarrow H_2$ be a compact linear operator. Prove that the adjoint operator T^* is compact. [5]
- 6. (a) Prove that the uniform limit of a sequence ${A_n}$ of compact operators defined on a normed linear space *X* into a normed linear space *Y* is compact. [6]
	- (b) Let H_1 and H_2 be two normed linear spaces and let $T: H_1 \rightarrow H_2$ be a compact linear operator. Show that range of *T* is separable. [3]
- 7. (a) Let *X* be a complex normed linear space and let $A: X \to X$ be a compact linear operator and $\lambda \neq 0$. If $y = \lambda x - Ax$ has a solution for arbitrary $y \in X$, then prove that the equation $\lambda x - Ax = 0$ has only trivial solution $x = 0$. [6]
	- (b) Let *X* be a complex normed linear space and let $A: X \rightarrow X$ be a compact linear operator and $\lambda \neq 0$. Then show that $y = \lambda x - Ax$ is solvable for those and only those y belonging to $a_{N(\lambda I - A')}$. [3]