M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Applied Stream)

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MAS305 (Advanced Operations Research-I)

Answer any five questions. Only first five answers will be evaluated.
9×5 = 45
1. (a) State and prove the sufficient condition for optimality of Lagrange multiplier method for
solving constrained optimization problem with equality constraints
(b) Solve the following problem by Lagrange multiplier method
(5) Optimize
$$z = x_1^2 - 10x_1 + x_2^2 - 6x_2 + x_3^2 - 4x_3$$

subject to $x_1 + x_2 + x_3 = 7$
2. (a) Show that the Kuhn Tucker necessary conditions for the optimization problem
Minimize $f(x)$
subject to $g_i(x) \le 0$, $i = 1, 2, \dots, m$
and $h_j(x) = 0$, $j = 1, 2, \dots, l$
are also sufficient conditions if $f(x)$ is convex and $g_i(x)$, $i = 1, 2, \dots, m$ are convex
functions of x and $h_j(x)$ are linear.
(b) Use the Kuhn-Tucker necessary conditions to solve the following optimization problem:
Maximize $z = 2x_1 - x_1^2 + x_2$
subject to $2x_1 + 3x_2 \le 6$, $2x_1 + x_2 \le 4$ and $3x_1 + 9x_2 = 16$
3. (a) If the iterative sequence $\{x^{(k)}\}$ be defined as
 $x^{(k+1)} = x^{(k)} + \lambda^{(k)}d^{(k)}$
where $d^{(k)}$ is given by
 $d^{(k)} = -M_k \nabla f(x^{(k)})$
and also, if $\nabla f(x^{(k)}) \neq 0$ and M_k is positive definite, then show that the iterative
procedure possessed decent property.
(b) Using steepest descent method, minimize $f(x) = x_1^2 + x_2^2 + 2gx_1 + 2fx_2 + c$ starting
from the point $\binom{\alpha}{\beta}$.

- 4. (a) Write down Wolfe's algorithm for solving quadratic programming problem. [4]
 (b) Use Beale's method for solving the quadratic programming problem: [5] Maximize z = 4x₁ + 6x₂ - 2x₁² - 2x₁x₂ - 2x₂² subject to x₁ + 2x₂ ≤ 2 and x₁, x₂ ≥ 0
- 5. (a) Discuss Fibonacci search method for solving one-dimensional non-linear minimization [4] problem.
 - (b) Using Fibonacci search method

Maximize
$$f(x) = \begin{cases} \frac{2x+3}{6} & \text{for } x \le 3\\ -x+6 & \text{for } x > 3 \end{cases}$$

in the interval [-1, 5] (consider 6 experimental points).

6. (a) Define Slater's, Karlin's and strict constraint qualifications. [3]

(b) Show that

,

- (i) Slater's constraint qualification and Karlin's constraint qualification are equivalent.
- (ii) The Strict constraint qualification implies Slater's constraint qualification and Kerlin's constraint qualification.
- 7. (a) State and prove Max-flow Min-cut theorem for a network flow problem. [4]

(b) Find the maximum flow in the graph with the following arcs and arc capacities, flow in [5] each arc being non-negative. Arc (v_j, v_k) is denoted as (j, k). v_a is the source and

 v_b , the sink.

Arc	(<i>a</i> , 1)	(<i>a</i> , 2)	(<i>a</i> , 3)	(1, 4)	(1, 5)	(1, 6)	(2, 4)	(2, 5)
Capacity	2	2	2	1	1	1	1	1

Arc	(2, 6)	(3, 4)	(3, 5)	(3, 6)	(4, b)	(5, <i>b</i>)	(6, <i>b</i>)
Capacity	1	1	1	1	2	2	2

M.A./M.Sc. Semester III Examination, 2019 (Old pattern under CDOE) Subject: Mathematics (Pure Stream)

Time: 2 Hours

Full Marks: 45

[5]

[3+3]

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Paper: MPS305 (Operator Theory and Applications I)

Answer any **five** questions. Only **first five** answers will be evaluated. $9 \times 5 = 45$

- (a) Let X be a normed linear space with dual X[/]. Define annihilator of a subset of X and X[/]. [5] Show that the annihilator of a subset and the orthogonal complement of that subset coincide in a Hilbert space.
 - (b) Let $T_1: X \to X$ and $T_2: X \to X$ be two bounded linear transformations and T_1' and T_2' be [4] its conjugates respectively where X is a normed linear space. Show that (i) $(T_1+T_2)'=T_1'+T_2'$ and (ii) $(T_1T_2)'=T_2'T_1'$.
- 2. (a) Show that a surjective symmetric operator T: $D_T \rightarrow X$ is self adjoint where D_T is a dense [3] subspace of a complex Hilbert space *X*.
 - (b) Let $T \in B(X, Y)$ where X and Y are complex Hilbert spaces. Show that (i) $(\overline{R(T)})^{\perp} = [6]$ $N(T^*)(\text{ii}) \ \overline{(R(T^*))}^{\perp} = N(T)(\text{iii}) ||T^*T|| = ||T||^2$
- 3. (a) Let E₁ and E₂ be two orthogonal projections on the closed subspaces M₁ and M₂ of a [4] complex Hilbert space X respectively. Show that the following conditions are equivalent.
 (i)E₁ ≤ E₂(ii) ||E₁x|| ≤ ||E₂x|| for all x ∈ X (iii) M₁ ⊂ M₂ (iv) E₂E₁ = E₁ (v) E₁E₂ = E₁.
 - (b) Let E_1 and E_2 be two orthogonal projections on the closed subspaces M_1 and M_2 of a [5] complex Hilbert space X respectively. Prove that $E_1 + E_2$ is an orthogonal projection on $\overline{[M_1 \cup M_2]} = M_1 + M_2$ if and only if E_1 is orthogonal to E_2 .
- 4. Let X be a complex Hilbertspace and let $A, B \in B(X, X)$ and AB = BA. Show that [9] $A \ge 0, B \ge 0$ implies $AB \ge 0$.
- 5. (a) If A and B are two compact operators defined on a normed linear space $X_{into a}$ [4] normed linear space Y, then show that A + B is compact and αA is compact where α is a scalar.
 - (b) Let H_1 and H_2 be two complex Hilbert spaces and let $T: H_1 \to H_2$ be a compact linear [5] operator. Prove that the adjoint operator T^* is compact.
- 6. (a) Prove that the uniform limit of a sequence $\{A_n\}$ of compact operators defined on a [6] normed linear space X into a normed linear space Y is compact.
 - (b) Let H_1 and H_2 be two normed linear spaces and let $T: H_1 \to H_2$ be a compact linear [3] operator. Show that range of *T* is separable.
- 7. (a) Let X be a complex normed linear space and let $A: X \to X$ be a compact linear operator [6] and $\lambda \neq 0$. If $y = \lambda x - Ax$ has a solution for arbitrary $y \in X$, then prove that the equation $\lambda x - Ax = 0$ has only trivial solution x = 0.
 - (b) Let X be a complex normed linear space and let $A: X \to X$ be a compact linear operator [3] and $\lambda \neq 0$. Then show that $y = \lambda x Ax$ is solvable for those and only those y belonging to $a_{N(\lambda I A')}$.