MBA(D) (3rd Semester) Examinations, June 2020 (DDE) [Session: Jan 2019–Dec 2020]

Subject: Operations Research Paper: MBD-301

Time: 3 Hours

Full Marks: 80

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

<u>Group - A</u>

Answer any six questions.

5×6=30

- 1. What are the glaring characteristics of Operations Research? Discuss, in brief.
- 2. A Mutual Fund company has Rs. 20 lakhs available for investment in Government bonds, blue chip stocks, speculative stocks and short-term bank deposits. The annual expected return and risk factors are given as follows:

Type of investment	Annual expected return	Risk factor (0 to 100)
Government bonds	14%	12
Blue chip stocks	19%	24
Speculative stocks	23%	48
Short-term deposits	12%	6

Mutual fund is required to keep at least Rs. 2 lakhs in short-term deposits and not to exceed an average risk factor of 42. Speculative stocks must be at most 20% of the total amount invested. How should Mutual Fund invest the funds so as to maximize its total expected annual return? Formulate this as a linear programming problem.

3. Construct the dual to the following primal problem:

 $\begin{array}{l} \text{Maximize } Z = 3x_1 + 5x_2 \\ \text{Subject to} \\ & 2x_1 + 6x_2 \leq 50 \\ & 3x_1 + 2x_2 \leq 35 \\ & 5x_1 - 3x_2 \leq 10 \\ & x_2 \leq 20 \\ & x_1, \, x_2 \geq 0 \end{array}$

- 4. What is degeneracy in a transportation problem? How is it resolved?
- 5. Show the mathematical structure of an assignment problem.
- 6. Explain the significance of inventory control.
- 7. Construct a network for a project whose activities and their predecessor relationship are given in the following table:

Activity	А	В	С	D	E	F	G	Η	Ι	J	K
Predecessor	-	-	-	А	В	В	С	D	E	H, I	F, G

8. In the context of theory of game, define the following terms:

⁽a) Course of action, (b) Outcome, (c) Pay-off matrix, (d) Pure strategy, (e) Value of a game

Group -B

Answer any five questions.

10×5=50

9. Using simplex method solve the following LPP:

Maximize $Z = 4x_1 + 10x_2$ Subject to $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$

- 10. (a) Explain Vogel's Approximation Method (VAM) of finding the initial feasible solution to a transportation problem.
 - (b) Find initial feasible solution for the following transportation problem using VAM. The table below shows unit transportation costs.

		То	Wareho	Supply	
		\mathbf{W}_1	W_2	W ₃	Suppry
From Plant	P ₁	6	8	4	14
	P_2	4	9	8	12
	P ₃	1	2	6	5
Demand		6	10	15	31

11. Solve the following assignment problem which minimizes the total man hours. The time required for processing the job in hours is given in the following table:

	Men					
Jobs		А	В	С	D	
	1	10	25	15	20	
	2	15	30	5	15	
	3	35	20	12	24	
	4	17	25	24	20	

Determine the minimum man-hours to complete the jobs.

12. A project schedule has the following characteristics as shown in the table below:

Activity	Name	Time	Activity	Name	Time (days)
1-2	А	4	5-6	G	4
1-3	В	1	5-7	Н	8
2-4	С	1	6-8	Ι	1
3-4	D	1	7-8	J	2
3-5	Е	6	8-10	Κ	5
4-9	F	5	9-10	L	7

(i) Construct PERT network.

(ii) Compute T_E and T_L for each activity.

(iii) Find the critical path.

Table: Time Estimates for R & D Project							
Activity	Activity Name	to	t _m	tp			
1-2	А	4	6	8			
1-3	В	2	3	10			
1-4	С	6	8	16			
2-4	D	1	2	3			
3-4	Е	6	7	8			
3-5	F	6	7	14			
4-6	G	3	5	7			
4-7	Н	4	11	12			
5-7	Ι	2	4	6			
6-7	J	2	9	10			

13. An R & D project has a list of tasks to be performed whose time estimates are given in the table below:

- (i) Draw the project network.
- (ii) Find the critical path.
- (iii) Find the probability that the project is completed in 19 days. If the probability is less than 20%, find the probability of completing it in 24 days.
- 14. (a) Discuss the operating characteristics of a queue.
 - (b) In relation to queuing theory, define the following terms:
 - (i) Balking, (ii) Reneging, (iii) Jockeying
- 15. Write short notes on any two:
 - (a) Applications of duality
 - (b) Nash equilibrium
 - (c) A priori criterion of decision-making
 - (d) Monte Carlo simulation