M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Applied Stream) Course: MMATA402 & MMATA403

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning] Write the answer to Questions of each Course in separate books.

MMATA402 (Wavelet Analysis)

[Marks: 20]

Ansv	(a) Write down the Haar function Plot it explaining the physical significances		$10 \times 2 = 20$
1.	(a)	Write down the Haar function. Plot it explaining the physical significances.	[2+2]
	(b)	Find the Fourier Transformation of the Haar function. Plot the transformed function	. [4+2]
		Interpret it.	
2.	(a)	If Ψ is a wavelet and ϕ is a bounded integrable function, then prove that the	e [6]
		convolution function $\Psi^* \phi$ is a wavelet.	
	(b)	If $U(a,b)$ is a wavelet operator prove that $U(a,b)U(c,d)=U(ac, b+ad)$.	[4]
3		Show that the Legendre polynomials form an orthogonal system in the space to be stated by you.	e [10]

MMATA403 (Dynamical Systems)

[Marks: 20]

Answer any two questions. Only first two answers will be evaluated.			$2 \times 10 = 20$
1.		Define orbital derivative. State Lyapunov theorem and apply it to show that origin	[2+2+6]
		is an asymptotically stable equilibrium point of the system:	
		$\dot{x} = -2y + yz - x^3, \dot{y} = x - xz - y^3, \dot{z} = xy - z^3$	
2.	(a)	Write short note on saddle node bifurcation.	[5]
	(b)	Describe the bifurcation of the system $\dot{x} = x^3 - 5x^2 - (\mu - 8)x + (\mu - 4)$	[5]
3.	(a)	Find the fixed points of the one-dimensional map $f(x) = x + \sin x, x \in \mathbb{R}$. Also	[1+2]
		determine the basins of attraction.	
	(b)	Show that $\{-1,1\}$ is an attracting 2-cycle of the map $f(x) = -x^{1/3}, x \in \mathbb{R}$.	[3]
	(c)	Prove that each solution of the equation $\frac{dx}{dt} + x = 0$ is asymptotically stable.	[4]

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATP403 (Topology-III)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

Answer any **four** questions. Only **first four** answers will be evaluated. $4 \times 10 = 40$

- 1. (a) Let $\{S_n, n \in D, \geq\}$ be a net in a topological space (X, τ) and for each $n \in D$, $A_n = [5]$ $\{S_p : p \in D \text{ with } p \geq n\}$. Prove that a point $x_0 \in X$ is a cluster point of $\{S_n, n \in D, \geq\}$ if and only if $x_0 \in \overline{A_n}$ for every $n \in D$.
 - (b) Let $\{S_n, n \in D, \geq\}$ be a net in a topological space (X, τ) . Prove that there exists a [5] filter \mathcal{F} on X such that if $x \in X$ is a cluster point of the net $\{S_n, n \in D, \geq\}$, then x is also a cluster point of the filter \mathcal{F} and vice-versa.
- 2. (a) Prove that a filter \mathcal{F} on a set $X \neq \emptyset$ is an ultrafilter if and only if any subset A of X, [5] which intersects every member of \mathcal{F} , belongs to \mathcal{F} .
 - (b) Let τ be the usual topology on \mathbb{R} , $A = \{a, b, c\}$ and $p: \mathbb{R} \to A$ be a function defined [2] by $p(x) = \begin{cases} a, & \text{if } x > 0 \\ b, & \text{if } x < 0 \\ c, & \text{if } x = 0. \end{cases}$

Find the quotient topology on *A* generated by *p*.

- (c) Prove that every closed, surjective, continuous map from a topological space (X, τ) to a [3] topological space (Y, σ) is a quotient map.
- 3. (a) Prove that the topological product of any collection of compact spaces is compact. [6]
 - (b) Prove that every uniform space is regular.
- 4. State and prove Embedding lemma and hence prove that a topological space (X, τ) is a [5+5] Tychonoff space if and only if it is homeomorphic to a subspace of a cube.
- 5. If X is a Tychonoff space and f is a continuous function from X to a compact Hausdorff [10] space Y, then prove that there is a continuous extension of f which carries the Stone-Cech compactification $\beta(X)$ into Y.
- 6. (a) Consider the Euclidean space \mathbb{R}^n and let $x_0 \in \mathbb{R}^n$. Show that $\pi_1(\mathbb{R}^n, x_0) = \{0\}$, [5] where 0 is the identity element of the group $\pi_1(\mathbb{R}^n, x_0)$.
 - (b) Show that the map p: ℝ → S¹ given by the equation p(x) = (cos 2πx, sin 2πx) is a [5] covering map, where S¹ is the unit circle in ℝ² endowed with the topology induced by the usual topology of the plane ℝ².

[4]