M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Applied Stream) Course: MMATA404 & MMATG405

Time: 2 Hours

,

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning] Write the answer to Questions of each Course in separate books.

MMATA404 (Introduction to Quantum Mechanics)

[Marks: 20]

Answer any	two questions. Only first two answers will be evaluated.	$10 \times 2 = 20$
1.	Show that in the scattering of electromagnetic radiation from a stationary electron the	e [2+8]
	change in wave length of the radiation depends only on the angle of scattering.	
2.	Show that solution of the Schrodinger equation corresponding to the one-dimensional	ıl [10]
	harmonic oscillator reduces to the solution of Hermite differential equation.	
3.	If A and B be two Hermitian operators acting on the one-particle state space with [A	. , [10]

B] = $i\hbar I$, prove that $\Delta A \Delta B \ge \hbar/2$.

MMATG405 (Chaos and Fractals)

[Marks: 20]

Answer any two questions. Only first two answers will be evaluated.			$10 \times 2 = 20$
1.	(a)	Prove that conjugacy is an equivalence relation.	[5]
	(b)	Show that the logistic map $f_4(x)$ and the tent map are conjugate.	[5]
2.	(a)	Explain topological mixing and Sensitive Dependence on Initial Conditions (SDIC properties for a map $f: X \to X$.) [6]
	(b)	Find the Lyapunov exponent for the tent map.	[4]
3.	(a)	White a short note on 'Feigenbaum number'.	[4]
	(b)	Show that Cantor set is a self-similar fractal. Calculate the box dimension of vor	n [6]
		Koch curve.	

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATP404 & MMATG405

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning] Write the answers to questions of each course in separate books.

Course: MMATP404 (Set Theory and Mathematical Logic) [Marks 20]

Answer any two questions. Only first two answers will be evaluated. 2×10 = 20
1. (a) If A is any set, show that card(A) < card(P(A)), where P(A) denotes the power [5] set of A.
(b) Give an example with justifications of a valid argument which contains false [2] premises and false conclusion.
(a) If P is a trattaleous containing statement latters and Oprices from Phys. [2+1]

- (c) If *P* is a tautology containing statement letters $p_1, p_2, ..., p_n$ and *Q*arises from*P*by [2+1] substituting forms $P_1, P_2, ..., P_n$ respectively, then prove that *Q* is a tautology. Give an example in support of it.
- 2. (a) If α , β and γ are cardinal numbers then show that $(\alpha\beta)^{\gamma} = \alpha^{\gamma}\beta^{\gamma}$. [5]
 - (b) For any well-formed formula *A*, *B*, show that $\sim A \Rightarrow (A \Rightarrow B)$ is a theorem of [3] axiomatic set theory *L*.
 - (c) For the given statement letters p and q, examine if the statement form $(p \Rightarrow q) \Leftrightarrow$ [2] $((\sim p) \lor q)$ is a tautology.
- (a) Let (A, ≤) be a well-ordered set. Then prove that for each x ∈ A, A_x ∪ {x} is either [3+2] an initial segment of A or the whole of A. Show by an example that addition of ordinal numbers is not commutive.
 - (b) For the given statements A, B, C, D and E, prove that the following argument is valid [3]
 - (i) $A \lor (B \Longrightarrow D)$
 - (ii) $\sim C \Rightarrow (D \Rightarrow E)$
 - (iii) $A \Rightarrow C$
 - (iv) $\sim C$
 - $\therefore B \Longrightarrow E$

(c) Suppose that the statement letters p, q, r and s are assigned the truth values T, F, F [2] and T respectively. Find the truth value of the following: $(p \lor (\sim q) \lor r) \Rightarrow (s \lor (\sim s))$, where 'T' and 'F' represent truth values 'True'

and 'False' respectively for a given statement.

Course: MMATP402 (Graph Theory)

,

[Marks: 20]

Ans	wer an	y two questions. Only first two answers will be evaluated. 2	$\times 10 = 20$
1.	(a)	Show that the sum of the degrees of the vertices of a graph G is twice the number of	[5]
		edges in G.	
	(b)	What do you mean by a graphical sequence?	[1+4]
		Examine whether the sequence {3, 5, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0} is graphical or not.	
2.	(a)	Prove that a connected graph G is a tree if and only if any two vertices of G are	[5]
		connected by a unique path.	
	(b)	Show that every vertex of an Eulerian graph is of even degree.	[5]
3.	(a)	Let $p_n(\lambda)$ be a chromatic polynomial of a graph G with n vertices. Prove that G is	[4]
		complete if and only if $p_n(\lambda) = \lambda(\lambda - 1)(\lambda - 2) \dots (\lambda - n + 1)$.	
	(b)	Prove that a complete graph with five vertices has no dual.	[4]
	(c)	Draw a regular graph with six vertices.	[2]