M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Applied Stream)

Course: MMATAME406-1 (Boundary Layer Flows & Magnetohydrodynamics-II)

Time: 2 Hours Full Marks:		40		
The figures in the margin indicate full marks.				
Candidates are required to give their answers in their own words as far as practicable.				
	[Notation and symbols have their usual meaning]			
Answer a	ny four questions. Only first four answers will be evaluated.	$4 \times 10 = 40$		
1.	Write short notes on (a) magnetic Reynolds number (b) Sausage mode of instability.	[5+5]		
2.	State and prove Ferrero's law of isorotation.	[2+8]		
3.	Obtain the general solution of a force free field. Define Toroidal field and Poloidal field.	[6+2+2]		
4. (a)	Using MHD approximations, simplify the expression for total current.	[4]		
(b)	Prove that for a perfectly conducting fluid, lines of magnetic force are frozen in the fluid.	[6]		
5. (a)	Derive magnetic induction equation and explain the terms involved in it.	[5]		
(b)	Obtain Ohm's law with Hall current for a static conductor.	[5]		
6.	What do you mean by MHD Rayleigh problem? Dicuss the problem and set up	[2+2+3+3]		

the governing equations with appropriate boundary conditions for it.

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Applied Stream) Course: MMATAME406-2 (Turbulent Flows-II)

Time: 2 Hours	Full Marks: 40			
The figures in t	the margin indicate full marks.			
Candidates are required to give their answers in their own words as far as practicable.				
[Notation and syn	mbols have their usual meaning]			
Answer any four questions. Only first four answers will be evaluated. 4×10^{-10}				
1. Write down properties of two	fundamental correlation functions f and g . [4+6]			
Determine the relation between f :	and g.			

- 2. Establish Taylor's equation for the rate of dissipation of isotropic turbulence. [5] (a) [5]
 - Deduce Saffman invariant in turbulence. (b)

3.

Define spectral functions in turbulence Let $R(r) = \frac{1}{2}R_{ij}(r)$ where $R_{ij}(r)$ is the ^[2+4+4] two-point correlation function. Establish the relations,

I.
$$R(r) = \int_{0}^{\infty} E(k) \frac{\sin(kr)}{kr} dk,$$

II.
$$E(k) = \frac{2}{\pi} \int_{0}^{\infty} R(r) kr \sin(kr) dr.$$

4. Discuss Kolmogorov equilibrium hypothesis in turbulence and hence establish [5+5] Kolmogorov scaling laws on dimensional ground.

- 5. Define velocity structure function of order p in turbulence. Prove Kolmogorov [3+7] four-five law for homogeneous and isotropic turbulent flows.
- 6. Establish Karman-Howarth equation of two correlation functions for isotropic [8+2] turbulence. What is the difficulty for solving this equation?

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Applied Stream) Course: MMATAME406-3 (Space Sciences-II)

Time: 2 Hours Full Marks: 4					
The figures in the margin indicate full marks.					
	Candidates are required to give their answers in their own words as far as practicable.				
	[Notation and symbols have their usual meaning]				
Answer ar	ny four questions. Only first four answers will be evaluated.	$4 \times 10 = 40$			
1.	Derive the $(0,0)$ -th component of Ricci tensor for the Friedmann Metric.	[10]			
2.	Construct the Hubble parameter for the universe for a particular dark energy model to	o [6+4]			
	be chosen by you. How a Hubble parameter-redshift data set can help you to constrain	1			
	the free parameters of the model?				
3.	Define with explanation: Scale factor, cosmological redshift, Hubble parameter	, [2×5]			
	dimensionless density parameter, critical density of universe.				
4.	On which parameter does Chandrasekhar's limit depend? Explain your answer. If you	u [4+6]			
	incorporate rotation and charge or either of them, what will be the consequences?				
5.	Construct and solve radiative transfer equation.	[10]			
6.	Explain in brief about fine tuning problem of cosmology.	[10]			

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATPME406-1 (Advanced Functional Analysis-II)

Time: 2 Hours Full Marks: 4		10	
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]			
Answer a 1. (a)	any four questions. Only first four answers will be evaluated. Define a best approximation to a point x of a normed linear space X out of a given	$4 \times 10 = 40$ [2+2]	
	subspace Y of X. Find a best approximation to a point $(\frac{1}{3}, \frac{1}{2}, \frac{1}{4}) \in \mathbb{R}^3$ out of zx-		
	plane.		
(b)	Let X be a normed linear space and Y be a subspace of X such that $Dim(Y) < \infty$. Prove that there exists a best approximation to $x \in X$ out of Y. Does the converse	[4+2]	
2. (a)	hold if $Dim(Y) = \infty$?	[5+2]	
2. (a)	Let <i>C</i> be a closed convex subset of a Hilbert space <i>H</i> and let $x \in H$. If $\delta = \inf_{y \in C} x - y $, then show that there exists a unique element $y_0 \in C$ such that	[5+2]	
	$ x - y_0 = \delta$. Hence show that there exists a unique element in C having		
(b)	smallest norm. Examine whether $C(X, \mathbb{R})$ is a lattice.	[3]	
3.	Define an ideal in a Banach algebra X with identity e . Let M be a maximal ideal in a commutative Banach algebra X with identity e . Then prove the following: (i) M is closed.	[2+2+4+2]	
	 (i) <i>M</i> is closed. (ii) If <i>I</i> be a proper ideal of <i>X</i> then there exists a maximal ideal in <i>X</i> such that <i>I</i> ⊆ <i>M</i>. 		
	(iii) If $x \in I$, then x is not invertible, I being a proper ideal of X.		
4. (a)	Define weak topology on a normed linear space. Prove that the notion of weak convergence of a sequence of elements in a normed linear space X coincides with	[2+3]	
(b)	the notion of convergence with respect to weak topology on <i>X</i> . Prove that a subspace of a normed linear space is weakly closed if and only if it is strongly closed.	[5]	
5.	Define (i) spectrum and (ii) spectral radius of an element in a Banach algebra with	[2+2+6]	
	identity e. Prove that $\sigma(x)$, the spectrum of x, is compact, assuming $\sigma(x)$ non-		
6. (a)	empty. When is a normed linear space said to be weakly complete? If a normed linear space <i>X</i> is reflexive, then prove that it is weakly complete.	[2+5]	
(b)	Prove that the collection of all non-invertible elements in a Banach algebra X with identity e forms a closed set in X .	[3]	

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATPME406-4 (Rings of Continuous Function II)

Time: 2 Hours Full Marks: 4			
The figures in the margin indicate full marks.			
Candidates are required to give their answers in their own words as far as practicable.			
	[Notation and symbols have their usual meaning]		
Answer	ny four questions. Only first four answers will be evaluated.	$\times 10 = 40$	
1 (a)	If <i>I</i> is a <i>z</i> -ideal of <i>C</i> , then show that C/I is totally ordered if and only if <i>I</i> is prime.	[2+2]	
(b)	Show that any prime <i>z</i> -filter with countable intersection property is contained in unique real- <i>z</i> -ultrafilter.	[4]	
(c)	Show that arbitrary intersection of absolutely convex ideals of $C(X)$ is absolutely convex.	[2]	
2 (a)	Let ω_1 be the first uncountable ordinal space. Show that of any two disjoint closed sets in ω_1 , at least one is countable.	[4]	
(b)	Show that $C(\omega_1)$ contains exactly one real maximal ideal which is not fixed and contains no hyper-real maximal ideal.	[4+2]	
3 (a)	Show that a space is pseudocompact if and only if every non-empty zero set in βX meets <i>X</i> .	[3+3]	
(b)	Show that βX is extremally disconnected if and only if X is extremally disconnected.	[2+2]	
4 (a)	Show that for any two positive integers <i>n</i> and <i>m</i> , $f^{2n} + g^{2m} \in M^p$ if and only if $\sigma f + \delta g \in M^p$, for any $\sigma, \delta \in C(X)$.	[4]	
(b)	Show that for any maximal ideal M of $C(X)$, $M \cap C^*(X)$ is a maximal ideal of $C^*(X)$ if and only if M is real maximal ideal of $C(X)$.	[3+3]	
5 (a)	Show that for any $p \in \beta X$, $M^p = \{f \in C(X): (fg)^*(p) = 0, \text{ for every } g \in C(X)\}.$	[6]	
(b)	Show that an arbitrary intersection of realcompact subsets is realcompact.	[4]	
6 (a)	Show that a closed subset of a realcompact space is realcompact.	[3]	
(b)	Show that any non-empty G_{δ} – set in υX must intersect X.	[4]	
(c)	Show that $v_f X = \{p \in \beta X : f^*(p) \in \mathbb{R}\}, f \in C(X)$ is a realcompact subset of βX .	[3]	

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATPME406-5 (Advanced Complex Analysis-II)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Notation and symbols have their usual meaning]

Answer any **four** questions. Only **first four** answers will be evaluated. $4 \times 10 = 40$

- (a) Let u(x, y) be a harmonic function in a domain D with harmonic conjugate v(x, y), and [7] let z₀ be an arbitrary point of D and Δ = Δ(z₀) be the distance between z₀ and the boundary of D. Show that u(x, y) and v(x, y) can be represented in the Poisson's integral forms.
 - (b) Let D be open connected set in C, and let u₁(x, y),u₂(x, y) be two functions harmonic on D and continuous on D. If u₁(x, y) = u₂(x, y) on the boundary of D, then show that [3] u₁(x, y) = u₂(x, y) on D.

2. (a) Prove that any harmonic function defined in a domain *D* has the mean value property. [5]

- (b) Give a physical interpretation of the Dirichlet problem for a disk.
- 3. Prove that the set of period points of a non-constant periodic function cannot have any [10] finite limit point.
- 4. (a) What is a doubly periodic function?

(b) Prove that every doubly periodic entire function is a constant.

- 5. (a) Let n(x) denote the numbers of zeros of f(z) in |z| < x, where a zero is counted [5] according to its multiplicity. If $r_m < R \le r_{m+1}$, then show that $\int_0^R \frac{n(x)}{x} dx = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\phi})| d\phi \log |f(0)|$, where $f(0) \ne 0$.
 - (b) Let f be regular and $|f(z)| \le M$ in $|z| \le R$ and suppose that $f(0) \ne 0, \infty$. Show that [5] the number of zeros of f in the disk $|z| \le \delta R (0 < \delta < 1)$ does not exceed $\frac{1}{\log \delta} \log \frac{M}{|f(0)|}$.

6. (a) Show that for any complex number $a, \frac{1}{2\pi} \int_0^{2\pi} \log|a - e^{i\theta}| d\theta = \log^+|a|.$ [4]

(b) For a meromorphic function f(z), prove that $\frac{1}{2\pi} \int_0^{2\pi} m(r, e^{i\theta}; f) d\theta \le \log 2.$ [6]

M.A./M.Sc. Semester IV Examination, 2021 (CBCS) Subject: Mathematics (Pure Stream) Course: MMATPME406-6 (Measure and Integration – II)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Notation and symbols have their usual meaning]

Answer any **four** questions. Only **first four** answers will be evaluated. $4 \times 10 = 40$ 1. (a) Let μ be a signed measure on a measurable space (X, S). If $\{E_n\}_{n \in \mathbb{N}}$ is a monotone [3]

[5]

[2]

[8]

increasing sequence in S, then prove that $\mu\left(\lim_{n\to\infty} E_n\right) = \lim_{n\to\infty} \mu(E_n)$.

- (b) State and prove Hahn-decomposition theorem. [2+5]
- 2. (a) Let μ be a signed measure on a measurable space (X, S) and μ = μ⁺ μ⁻ be the [3] Jordan decomposition of μ. If μ is finite, then show that the measures μ⁺, μ⁻ are also finite.
 - (b) Let μ be a signed measure on a measurable space (X, S). Prove that $f \in L_1^r(X, S, \mu)$ if [4] and only if $f \in L_1^r(X, S, \mu^+) \cap L_1^r(X, S, \mu^-)$.
 - (c) Define a complex measure. Give an example of a complex measure. [2+1]
- 3. (a) Let ρ be a complex measure on a measurable space (X, S). Prove that there exist [7] finite measures ρ₁, ρ₂, ρ₃, ρ₄ on (X, S) such that
 - (i) $\rho_1 \perp \rho_{2,\rho_3} \perp \rho_4$ and
 - (ii) $\rho(E) = \rho_1(E) \rho_2(E) + i \rho_3(E) i \rho_4(E), \forall E \in S.$
 - (b) Let (X, S, μ) and (Y, T, ρ) be two finite measure spaces. For each V ∈ S × T, let [3] f_V: X → ℝ*, g^V: Y → ℝ* be defined by f_V(x) = ρ(V_x), ∀ x ∈ X and g^V(y) = μ(V^y), ∀ y ∈ Y. If A × B is a measurable rectangle of X × Y, then show that f_{A×B} is S-measurable and g^{A×B} is T-measurable.(Here ℝ* = ℝ ∪ {∞, -∞}).
- 4. (a) Let (X, S, μ) and (Y, T, ρ) be two finite measure spaces. Define product measure μ × ρ [1+4+2] on the measurable space (X × Y, S × T). Show that μ × ρ is a measure S × T. Further if E ∈ S and F ∈ T, then show that (μ × ρ)(E × F) = μ(E)ρ(F).
 - (b) Let (X, S, μ) be a measure space and f be a measurable function on X. Show that [3] $|f| \le ess \sup|f| \ a.e. \text{ on } X.$
- 5. (a) Let $f \in L^p[a, b]$, $1 \le p < \infty$ and $\epsilon > 0$. Prove that there exists a simple function $s \in [7]$ $L^p[a, b]$ such that $||f - s||_p < \epsilon$ and $|s| \le |f|$.
 - (b) Let μ be a signed measure on a measurable space (X, S). If $E, F \in S, E \subset F$ and [3] $|\mu(F)| < \infty$, then show that $|\mu(E)| < \infty$ and $\mu(F E) = \mu(F) \mu(E)$.
- 6. (a) Let $f \in L^p[a, b]$ and $g \in L^q[a, b]$, where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. [6] Prove that $fg \in L^1[a, b]$ and $\int_a^b |fg| dm \le ||f||_p ||g||_q$, where *m* denotes Lebesgue measure.
 - (b) Let (X, S) and (Y, T) be measurable spaces and \hat{E} be the class of all elementary sets in [4] $X \times Y$. Prove that \hat{E} is an algebra.