Internal Assessment M.A./ M.Sc. Semester-IV Examination,2021(CDOE) Subject: Mathematics (Pure Stream)(CBCS)

Answer of MMATP401 & MMATP402 together should be limited to two A4 size pages,

Answer of MMATP403 should be limited to two A4 size pages,

Answer of MMATP404 & MMATG405 together should be limited to two A4 size pages,

Answer of MMATPME406-1 should be limited to two A4 size pages,

Answer of MMATP407-6 should be limited to two A4 size pages.

Notation and symbols have their usual meaning.

Time: 2 Hours

Paper :MMATP 401 (Abstract Algebra-III)

Answer any one question. Only first answer will be evaluated.

- 1. Let f(x) be a non-constant polynomial over a field K. Prove that there is a splitting field of f(x) over K.
- 2. Let *F* be a field and α, β be two roots of an irreducible polynomial over *F*. If $\alpha \in F(\beta)$, then show that $F(\alpha) = F(\beta)$.

Paper :MMATP 402 (Calculus of \mathbb{R}^{n} -II)

Answer any one question. Only first answer will be evaluated.

1. Let $I = [0, 1], Q = I \times I$ and $f: Q \to \mathbb{R}$ be a function, defined by $f(x, y) = \frac{1}{q}$, if x and y are both rationals and $= \frac{p}{q}$, where p, q are positive integers with gcd(p, q) = 1. = 0, otherwise

Show that $\int_0 f$ exists.

2. Let S be a bounded subset of \mathbb{R}^n and $f, g: S \to \mathbb{R}$ be two bounded functions. Suppose f, g are integrable over S. If f and g agree on S except for a set of measure zero, then show that

$$\int_{S} f = \int_{S} g.$$

Paper:MMATP403 (Topology-III)

Answer any one question. Only first answer will be evaluated.

- 1. Prove that a topological space is Hausdorff if and only if each net in the space converge to at most one point .
- 2. (a) Prove that every quotient space of a discrete space is discrete.
 - (b) Prove that a uniform space (X, μ) is T_1 if and only if the intersection of all members of μ is the diagonal in $X \times X$. (5+5)

 $1 \times 5 = 5$

 $1 \times 10 = 10$

 $1 \times 5 = 5$

Full Marks: 50

aper :MMATP404 (Set theory and Mathematical Logic)

Answer any one question. Only first answer will be evaluated.

- 1. If α, β, γ are cardinal numbers such that $\alpha \leq \beta$, then show that $\alpha + \gamma \leq \beta + \gamma$.
- 2. Prove that the pairs $\{\sim, \land\}, \{\sim, \lor\}, \{\sim, \rightarrow\}$ are adequate sets of connectives.

Paper :MMATG405 (Graph Theory)

Answer any one question. Only first answer will be evaluated.

- 1. Prove that a connected graph is a tree if and only if any two vertices x and y are connected by a unique path.
- 2. Let G(V, E) be a simple connected graph with *n* vertices such that $d(v) \ge \frac{n}{2}$ for all $v \in V$. Show that G is Hamiltonian.

Paper :MMATPME406-1 (Advanced Functional Analysis-II)

Answer any one question. Only first answer will be evaluated.

- 1. (a) Prove that the set of all non-invertible elements in X is a closed set .
 - (b) Prove that a subspace of a normed linear space is weakly closed if and only if it is strongly closed. (5+5)
- 2. (a) Show that multiplication operation in a Banach Algebra X is continuous.
 - (b) If f_1 and f_2 are multiplicative functionals with the same null space, then show that $f_1 = f_2$. (5+5)

Paper :MMATPME407-6 (Operator Theory and Applications-II)

Answer any one question. Only first answer will be evaluated.

- 1. (a) Show that the residual spectrum of a bounded self-adjoint operator defined on a complex Hilbert space is empty.
 - (b) Let E_1 and E_2 be two orthogonal projections on the closed subspaces M_1 and M_2 of a complex Hilbert space X respectively. Prove that E_1E_2 is an orthogonal projection if and only if $E_1E_2 = E_2E_1$. Find also the range of E_1E_2 if it is an orthogonal projection.
- **2.** Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Show that
 - (a) all the eigen values of T (if they exist) are real.
 - (b) Eigen vectors corresponding to (numerically) different eigen values of T are orthogonal.

(5+5)

(5+5)

 $1 \times 5 = 5$

 $1 \times 10 = 10$

 $1 \times 10 = 10$

Internal Assessment M.A./ M.Sc. Semester-IV Examination, 2021(CDOE) Subject: Mathematics (Applied Stream) (CBCS)

Answer of MMATA401 should be limited to two A4 size pages,

Answer of MMATA402 & MMATA403 together should be limited to two A4 size pages, Answer of MMATA404 & MMATG405 together should be limited to two A4 size pages, Answer of MMATAME406-1 should be limited to two A4 size pages, Answer of MMATAME407-2 should be limited to two A4 size pages.

Notation and symbols have their usual meaning.

Time: 2 Hours

Paper: MMATA401 (Fluid Mechanics)

Answer any one question. Only first answer will be evaluated.

1.	State and prove Kelvin's circulation theorem for the motion of an incompressible inviscid f	luid in
	a simply connected region.	3+7
2.	State and prove Kutta-Joukowski theorem.	3+7

2. State and prove Kutta-Joukowski theorem.

Paper: MMATA402 (Wavelet Analysis)

Answer any one question. Only first answer will be evaluated.

- 1. (a) Give an example of a function f(x) such that $f(x) \in L^1(\mathbb{R})$ but $(x) \notin L^2(\mathbb{R})$. Justify your answer.
 - (b) Define "Support of a function". What do you mean by a "Compact Support"?
- 2. (a) What do you mean by the auto correlation function? What is normalised auto correlation function?
 - (b) Establish the relation between the auto correlation function of a signal $f(t) \in L^2(\mathbb{R})$ and **f**(**w**).

1+1+3

3+1+1

Paper: MMATA403 (Dynamical Systems)

Answe	1×5=5	
1.	Define conservative dynamical system. Give an example of it.	Prove that the phase volume of a
	conservative system is constant.	2+1+2
2.	Write short note on the following:	

- (a) Hopf bifurcation
- (b) Saddle-Node bifurcation 2.5 + 2.5

Full Marks: 50

1×10=10

1×5=5

Paper: MMATA404 (Introduction to Quantum Mechanics)

Answer any one question. Only first answer will be evaluated.

- 1. Show that for the scattering of electromagnetic radiation from a stationary electron, the change in wavelength depends only on the scattering angle.
- 2. Is it possible for a quantum particle to penetrate a region in which its Newtonian kinetic energy is negative? Support your answer by elaborate calculation with an example.

Paper: MMATG405 (Chaos and Fractals)

Answer any one question. Only first answer will be evaluated.

- 1. Write down two important properties of fractal objects. Briefly discuss the construction of VonKoch curve and then show that the length of the curve is infinite.
- 2. Give Mathematical definition of Chaotic map $f: \mathbb{R} \to \mathbb{R}$. Consider a map g: Unit circle $S \to S$ defined by $g(\theta) = \theta + \alpha$, where the rotation α is irrational. Show that the map g is topologically transitive on \mathbb{R} . 2+3

Paper: MMATAME406-1

(Boundary Layer Flows and Magneto-hydrodynamics-II)

Answer any one question. Only first answer will be evaluated.				
1.	Deduce the magnetic induction equation in MHD flows. Explain each term of this eq physically.	uation		
2.	Write short note on the following:	515		

- (a) Lundquist Criterion
- (b) Alfv'en waves

Paper: MMATAME407-2 (Advanced Operations Research-II)

Answer any one question. Only first answer will be evaluated.

- 1. (a) Derive steady state equations for non-Poisson queuing model $(M/E_k/1 : \infty/FCFS/\infty)$.
 - (b) What do you mean by group replacement policy? Derive the condition(s) that the group replacement policy becomes preferable than individual replacement policy after a certain time period t.
- 5+(1+4)2. Write short notes on the following: (a) Pontryagin's Maximum Principle
 - (b) Dynamic programming

 $1 \times 10 = 10$

5+5

4+6

$1 \times 10 = 10$

 $1 \times 5 = 5$

1×5=5

2+3