M.A./M.Sc. Semester I Examination, 2020 (CBCS, CDOE) Subject: Mathematics Course: MMATG103 & MMATG104

Time: 2 Hours

,

Full Marks: 40

Use separate answer booklets for each course. The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

MMATG103 (Topology I) [Marks: 20]

Answer any two questions. Only first two answers will be evaluated. $10 \times 2 =$			$10 \times 2 = 20$
1.	(a)	Prove that a co-finite topological space (X, τ) is discrete if and only if X is a finite set.	[3]
	(b)	Give an example with proper justifications of a continuous bijective mapping which is not a homeomorphism.	s [2]
	(c)	Let (X,τ) be a topological space, $A \subset X$ and $x_0 \in X$. If there exists a sequence	e [2+3]
		$\{x_n\}_{n\in\mathbb{N}}$ in A converging to x_0 , then show that $x_0 \in \overline{A}$. Does the converse hold Support your answer.	?
2.	(a)	Let (X, τ) and (Y, τ_1) be two topological spaces. If a mapping $f: (X, \tau) \to (Y, \tau_1)$	s [3]
		continuous, then show that $f(\overline{A}) \subset \overline{f(A)}$ holds for every subset A of X.	
	(b)	Give an example with proper justification of a T_2 space which is not T_3 .	[4]
	(c)	Prove that every T_4 space is a $T_{3\frac{1}{2}}$ space.	[3]
3.	(a)	Prove that a topological space (X, τ) is normal if and only if for each pair of disjoint	nt [4]
		closed sets A, B in X, there exists an open set U in X such that $A \subset U$ and $B \cap \overline{U} = \emptyset$.	
	(b)	Is regularity a hereditary property? Justify your answer.	[3]
	(c)	Prove or disprove: In every topological space (X, τ) , the set A' of all limit points of	of [3]
		$A(\subset X)$ is closed in (X, τ) .	
MMATG104 (Differential Geometry I)			
[Marks: 20]			
Ans	swer a	ny two questions. Only first two answers will be evaluated.	$10 \times 2 = 20$
1.		Define reparametrization of a parametrized curve with an example. Show that	[2+2+6]
		any reparametrization of a regular curve is regular.	
2.	(a)	Calculate the first fundamental form of the surface patch $\sigma(u, v) = a + up + vq$	[3]
		with p and q being perpendicular unit vectors and a is a constant.	
	(b)	Let $f: S_1 \to S_2$ be a diffeomorphism, where S_1 and S_2 are two surfaces. Show	[7]
		that f is an isometry if and only if, for any surface patch σ of S_1 , the patches	
		σ and $f \circ \sigma$ of S_1 and S_2 respectively, have the same first fundamental form.	

3. (a) Let γ be a unit speed curve in \mathbb{R}^3 with constant curvature and zero torsion. [6] Show that γ is a circle or part of a circle.

,

(b) Compute the torsion of the circular helix $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), \ \theta \in \mathbb{R}$, [4] where *a* and *b* are constants.