M.A./M.Sc. Semester I Examination, 2020 (CBCS, CDOE) Subject: Mathematics Course: MMATG105 & MMATG106

Time: 2 Hours

Full Marks: 40

Use separate answer booklets for each course. The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meaning]

> MMATG105 (Functional Analysis I) [Marks: 20]

Answer any two questions. Only first two answers will be evaluated.			$10 \times 2 = 20$
1.	(a)	When is a metric space said to be first category? Give an example of it with	[1+2+3]
		justifications. Let (X, d) be a complete metric space. If X contains no isolated	
		points, then show that X is uncountable.	
	(b)	Let (X, d) be a complete metric space and let $T: (X, d) \to (X, d)$ be continuous. If	[4]
		for some positive integer $k, T^k: (X, d) \to (X, d)$ is a contraction map then	
		prove that T has a unique fixed point in X .	
2.	(a)	Suppose $\{x_n\}$ be a sequence in X such that $x_n \to x_0$ as $n \to \infty$ and suppose $\{\alpha_n\}$ be	[2]
		a sequence of scalars such that $\alpha_n \to \alpha_0 as n \to \infty$. Show that $\alpha_n x_n \to \alpha_0 x_0 as$	
		$n o \infty$.	
	(1)		50 (07

(b) Define equivalent norms on a linear space. Prove that in a finite dimensional [2+4+2] normed linear space any two norms are equivalent. Give an example in support of the statement.

- 3. Define a complete orthonormal set of vectors in a Hilbert space. Let X be a Hilbert [10] space and $\{e_k\}$ be an orthonormal set of vectors in X. Suppose that $x \in X$. Prove that the following statements are equivalent.
 - i. $\{e_i\}$ is complete.
 - ii. $\langle x, e_i \rangle = 0 \Rightarrow x = \theta_X, \theta_X$ being the zero vector of *X*.

iii.
$$x = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i$$

iv. $\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 = ||x||^2.$

MMATG106 (Linear Algebra) [Marks: 20]

Answer any **two** questions. Only **first two** answers will be evaluated. $10 \times 2 = 2$

1. (a) Let W be a subspace of a finite dimensional vector space V over a field F. Show [6] that dim $(V/W) = \dim V - \dim W$.

Page 1 of 2

(b) Show that the quadratic form $x^2 + 2y^2 + 3z^2 - 2xy + 4yz$ is indefinite. [4]

2. (a) Let *V* and *W* be finite dimensional vector spaces of same dimension and [6] $T \in L(V, W)$. Show that the following statements are equivalent:

- (i) T is one-one
- (ii) T is onto

,

- (iii) Rank of $T = \dim of V$.
- (b) Find all the possible Jordan canonical forms of a matrix whose characteristic [4] polynomial is given by $(x + 5)^2(x 2)$.
- 3. (a) Show that any two similar matrices have the same minimal polynomial. [6]
 - (b) Let $\beta = \{(2,1), (3,1)\}$ be an ordered basis for \mathbb{R}^2 . Determine the dual basis of β . [4]