M.A./M.Sc. Semester I Examination, 2020 (CBCS, CDOE)

Subject: Mathematics

Course: MMATG108 & MMATG109

Time: 2 Hours Full Marks: 40

Use separate answer booklets for each course. The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Notation and symbols have their usual meaning]

MMATG108 (Ordinary Differential Equations)

[Marks: 20]

Answer any two questions. Only first two answers will be evaluated.

 $10 \times 2 = 20$

1. (a) Show that the function $f(t,x) = (x+x^2)\frac{\cos(t)}{t^2}$ satisfies Lipschitz condition in $|x| \le 1$

and $|t-1| < \frac{1}{2}$.

- (b) Find the general solution of the system $\dot{x} = x 5y$, $\dot{y} = x 3y$. [6]
- 2. (a) Show that $P_n(-z) = (-1)^n P_n(z)$, where $P_n(z)$ stands for Legendre polynomial of degree [4]
 - (b) Solve the equation $3z \frac{d^2w}{dz^2} + \frac{dw}{dz} 2w = 0$ in a series about z = 0.
- 3. (a) Find the nature of the critical point for the system $\dot{x} = -2x + 3y$, $\dot{y} = -x + y$. [3]
 - (b) Convert $\dot{x} = px + qy$, $\dot{y} = -qx + py$ into its polar form and hence solve it, where p and q [7] are real numbers. Draw phase diagrams for different signs of p and q.

MMATG109 (Partial Differential Equations)

[Marks: 20]

Answer any **two** questions. Only **first two** answers will be evaluated.

 $10 \times 2 = 20$

- 1. (a) Find the surface satisfying the partial differential equation $\frac{\partial^2 z}{\partial y^2} = 6x^3y$ and containing the two lines y = 0 = z and y = 1 = z.
 - (b) Solve the partial differential equation $z^2(p^2+q^2+1)=1$, where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$. [6]
- 2. (a) Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial z^2}$ into parabolic, hyperbolic or elliptic kind. [4]
 - (b) Reduce the given partial differential equation into its canonical form and hence solve it. [6]

$$\frac{\partial^2 u}{\partial x^2} - a^2 \frac{\partial^2 u}{\partial y^2} = 0$$

3. Solve the partial differential equation $\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = 0$, subject to the conditions, $\frac{\partial \varphi}{\partial r} = 0$ at r = a and $\frac{1}{r} \frac{\partial \varphi}{\partial \theta} = -U \sin\theta$ as $r \to \infty$.