Internal Assessment M.A./ M.Sc. Semester-IV Examination,2020(CDOE) Subject: Mathematics (Pure Stream)(Old Pattern)

Notations and symbols have their usual meanings

Time: 2 Hours

Full Marks: 20

Paper :MPG 401 (Modern Algebra-III)

Answ	ver any one question. Only first answer will be evaluated.	1×5 = 5		
1. I 1	Let <i>S</i> be any non-empty set and <i>R</i> be a ring with identity. Prove that there exist free <i>R</i> -module <i>F</i> such that <i>F</i> has a basis S' equipotent with <i>S</i> .	ts a		
2. 9	State and Prove the Fundamental theorem of Galois Theory.			
	Paper :MPG 402			
Unit- I				
(General Topology-II)				
Answ	ver any one question. Only first answer will be evaluated.	1×3 = 3		
1.	When is a topological space said to be totally disconnected? Prove that the			
	connected subsets in a totally disconnected space are the singletons.			
		(1+2)		
2.	Define uniform continuity between two uniform spaces. Prove that a uniformly			
	continuous function is continuous.			
		(1+2)		
Unit- II				
(Functional Analysis-III)				
Answ	ver any one question. Only first answer will be evaluated.	1×2 = 2		
1.	When is a sequence $\{x_n\}$ in a normed linear space X said to be weakly converge	ent to		

(1+1)

2. a) When is a linear operation said to be bounded? b) Prove that $l_p(1 is reflexive.$

(1+1)

Paper :MPS 403

(Advanced Functional Analysis-II)

Answer any one question. Only first answer will be evaluated.	1×5=5

1. When is an element in a Banach Algebra X with identity called invertible? Prove that the set of all invertible elements in X forms an open set in X.

(1+4)

2. Define weak topology and weak* topology in a conjugate space of a normed linear space. Prove that the notion of weak convergence of a sequence coincides with the convergence notion of the same sequence arising out of weak topology on a normed linear space. (1+1+3)

Paper : MPS 403 (Differential Geometry of Manifolds-II)

Answer any one question. Only first answer will be evaluated.1×5=5

- 1. Define an almost complex manifold. Give an example of it.
- 2. Define the Euclidean Connection on \mathbb{R}^n . Show that the Geodesics on \mathbb{R}^n with respect to the Euclidean Connection are the straight lines with constant speed parametrizations.

(2+3)

Paper :MPS 404 (Operator Theory and Applications-II)

Answer any one question. Only first answer will be evaluated. 1×5=5

- 1. Let X be a normed linear space and $T: X \to X$ be compact linear. Prove that the set of eigen values of T is countable and zero is the only possible point of accumulation of the set of eigen values.
- **2.** Let $T \in B(X,X)$, where X is a Banach space. Show that the spectrum $\sigma(T)$ of T is compact.

Internal Assessment M.A. / M.Sc. Semester-IV Examination, 2020 (CDOE) Subject: Mathematics (Applied Stream) (Old Pattern)

Notation and symbols have their usual meaning.

Time: 2 Hours Full Marks: 20 Paper: MAG 401 (Continuum Mechanics-III) Answer any one question. Only the first answer will be evaluated. 1×5=5 1. State and prove Kelvin's circulation theorem for the motion of an inviscid fluid in a simply connected region. 2. Using Cisotti's equation, find the complex potential for simple harmonic progressive gravity waves(water waves). Paper : MAG 402 Unit-l (Elements of Quantum Mechanics) Answer any one question .Only the first answer will be evaluated. 1×3=3 1. State the Broglie's hypothesis. Hence explain the concept of wave particle duality. (1+2) What do you mean by position probability density of a quantum particle? Using 2. Schrodinger equation, prove that the total probability is conserved. (1+2) Unit-II

(Chaos and Fractals)

Answer any one question .Only the first answer will be evaluated.1×2=2

1. Define non-hyperbolic fixed point of a map with example.

2. Write a short note on 'Topological transivity'.

Paper : MAS 403 (Viscous Flows, Boundary Layer Theory & Magneto-Hydrodynamics-II)

Answer any one question. Only the first answer will be evaluated. 1×5=5

- 1. Discuss briefly 'sausage mode of instability'.
- 2. Interpret physically the expression for Lorentz force per unit volume(simplified form). Hence indicate the existence of transverse Alfven's waves.

Paper : MAS 404

(Advanced Operations Research-II)

Answ	er any one question. Only the first answer will be evaluated.	1×5=5
1.	(a) Write down the dual of the primal problems with equality constrain	nts.
	(b) Write down the computational procedure for solving an optimization	on problem by
	Dynamic programming technique.	
		(2+3)
2.	Write short notes on the following:	
	(a) Classification on queuing models.	
	(b) Bellman's principle of optimality.	
		(2+3)