M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Applied Stream) Paper: MAG 401 (Continuum Mechanics III)

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings]

Ans	wer ai	by five questions. Only the first five answers will be evaluated.	5×9 = 45
1.	(a)	Write down the stress tensor at a point for an inviscid fluid.	[2]
	(b)	Obtain Euler's dynamical equations in vector invariant form for an incompressible inviscid fluid.	[7]
2.	(a)	Show that circulation round a circuit in a moving fluid is equal to the flux of vorticity across any surface bounded entirely by the circuit.	[6]
	(b)	The velocity components for a fluid motion are given by	[3]
		$u = a(x^2 - y^2), v = 2a(x^2 - xy), w = 0$. Obtain the circulation about the circle:	
		$x^2 + y^2 = 1, z = 0$ for this motion.	
3.	(a)	State and prove Kelvin's minimum energy theorem.	[2+3]
	(b)	Applying Milne-Thomson circle theorem, find the image of a source outside a circle.	[4]
4.		Define vortex surface. State and prove Helmphltz first theorem for vortex motion.	[2+2+5]
5.	(a)	Explain the physical significance of group velocity.	[3]
	(b)	Show that for waves on deep water, the group velocity is half the wave velocity and on very shallow water, it is equal to the wave velocity.	[3+3]
6.		Derive Navier-Stokes' equations of motion of a viscous incompressible fluid in vector form. Define Reynolds number and interpret it physically.	[5+2+2]
7.	(a)	An incompressible viscous fluid flows along an elliptic pipe under uniform axial pressure gradient. Find the rate of mass flux through it.	[4]
	(b)	For an incompressible viscous fluid, obtain the expression for the rate of energy dissipation due to viscosity.	[5]

M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Pure Stream)

Paper: MPG 401 (Modern Algebra III) Time: 2 Hours Full Marks: 45 The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings] Answer any **five** questions. Only the **first five** answers will be evaluated. $5 \times 9 = 45$ Let $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the 1. (a) [3+2] inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$. Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an [4] (b) integer. 2. Let F be a field and α be a algebraic over F. Show that $\{f \in F[x]: f(\alpha) = 0\}$ is a [4] (a) principal ideal of F[x]. Show that algebraic closure of \mathbb{Q} is an infinite extension of \mathbb{Q} . (b) [5] Deduce the splitting field of $x^3 - 2$ over \mathbb{Q} . Find the degree of its extension. Is it a [4+2+3] 3. Galois extension? Justify your answer. 4. (a) Let K be finite extension of F. Prove that K is a splitting field over [3+3] F if and only if every irreducible polynomial in F[x] that has a root in K splits completely in K[x]. (b) Show that every irreducible polynomial over a field of characteristic 0, is separable. [3] 5. Find all automorphisms of $\mathbb{Q}(\sqrt[3]{3},\sqrt{7})$. [5] (a) (b) Let F be the splitting field of $x^{2021} - 2$ over \mathbb{Q} . Show that there exists a subfield [2+2] E of F with [F:E] = 43. Further show that F is the Galois extension of E. Determine the Galois group of $(x^2 - 2)(x^2 - 3)(x^2 - 5)$. Determine all the 6. [4+2](a) subfields of the splitting field of this polynomial. Show that the Galois group of cyclotomic field $\mathbb{Q}(\xi_n)$ of n^{th} roots of unity is [3] (b) isomorphic to the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of non-zero residue class of integers modulo n. 7. Let R be a ring and let M be an R-module. Then show that M is Noetherian R-[3+3+3]

module if and only if every non-empty set of submodules of M contains a maximal element under inclusion if and only if every submodule of M is finitely generated.