M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Applied Stream) Paper: MAG 402

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings] Write the answer to Questions of each Group in separate books.

Group - A (Elements of Quantum Mechanics)

[Marks: 27]

Answer any three questions. Only the first three answers will be evaluated. $3 \times 9 = 27$ 1. State Bohr's postulates on hydrogen-like atoms. Hence calculate the energy levels of [4+5]the hydrogen atom. 2. (a) Show that the energy E must exceed the minimum value of potential V (x), for any [5] normalizable solution of the time-independent Schrodinger equation in one dimension. (b) If a wave function is normalized at t = 0, show that it will remain normalized [4] for all t. 3. [9] Calculate the energies and normalised eigenstates for a particle within an infinite potential box. 4. Show that in the n-th eigenstate of the harmonic oscillator, the average of kinetic [9] energy $\langle T \rangle$ is equal to the average of potential energy $\langle V \rangle$. 5. From the postulates of Quantum Mechanics, show that the expectation value of an [5+4]observable A in the state $|\Psi\rangle$ is, $\langle A\rangle = \langle \Psi | A | \Psi\rangle$. Hence show that if A is timeindependent and commutes with the corresponding Hamiltonian, then $\langle A \rangle$ is a constant of motion. **Group - B (Chaos and Fractals)** [Marks: 18] $2 \times 9 = 18$ Answer any **two** questions. Only **first two** answers will be evaluated.

1.	(a)	Give the mathematical definition of a chaotic map.	[4]
	(b)	Show that the conjugacy is an equivalence relation.	[5]
2.	(a)	Prove that the logistic map has a 2- cycle when the growth parameter exceed 3.	[5]
	(b)	Calculate the Lyapunov exponent for the tent map.	[4]
3.		Write two important properties of fractal objects. What do you mean by self - similar dimension of fractals ? Determine the self - similar dimension of von Koch curve.	[2+3+4]

M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Pure Stream) Paper: MPG 402

Time: 2 Hours

,

Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings] Write the answer to Questions of each Group in separate books.

Group – A (General Topology- II)

[Marks: 27]

Answer any three questions. Only first three answers will be evaluated. $9 \times 3 =$				
1.	(a)	Is \mathbb{R}_{ℓ} connected? Support your answer. (\mathbb{R}_{ℓ} denotes Sorgenfrey line i.e. \mathbb{R} with lower	r [3]	
		limit topology).		
	(b)	Prove that a topological space (X, τ) is connected if and only if $Bd(A) \neq \emptyset$ for every	y [4]	
		nonempty proper subset A of X. (Bd(A) denotes boundary of $A \subset X$).		
	(c)	Let $f: \mathbb{R} \to \mathbb{R}$ be any function such that $f(\mathbb{Q}) \subset \mathbb{R} - \mathbb{Q}$ and $f(\mathbb{R} - \mathbb{Q}) \subset \mathbb{Q}$. Show	v [2]	
		that f can not be continuous.		
2.	(a)	Let (X, τ) be a topological space. Prove that each point of X is contained in exactly on	e [5]	
		component of X.		
	(b)	Define a locally connected space. Prove that every compact locally connected space	e [1+3]	
		has a finite number of components.		
3.	(a)	Let (X^*, σ) be an one point compactification of a topological space (X, τ) , where	e [4]	
		$X^* = X \cup \{\infty\}$. Prove that (X, τ) is a compact subspace of (X^*, σ) if and only if ∞ if	s	
		an isolated point of (X^*, σ) .		
	(b)	Prove that every compact metric space is sequentially compact.	[5]	
4.	(a)	Define a uniformity μ on a non-empty set X.	[2]	
	(b)	Let μ be a uniformity on a nonempty set X and $\tau_{\mu} = \{G \subset X: \text{ for each } x \in G\}$	² , [4]	
		there exists $U \in \mu$ such that $U(x) \subset G$ }. Show that τ_{μ} is a topology on <i>X</i> .		
	(c)	Give an example with proper justification of topological space which is not metrizable.	[3]	
5.	(a)	Let \mathbb{R}^n be the Euclidean <i>n</i> -space and $x_0 \in \mathbb{R}^n$. Show that $\pi_1(\mathbb{R}^n, x_0) = \{0\}$, where	e [4]	
		0 is the identity element of the group $\pi_1(\mathbb{R}^n, x_0)$.		
	(b)	Show that the map $p: \mathbb{R} \to S^1$ given by the equation $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is	a [5]	
		covering map, where S^1 is the unit circle in \mathbb{R}^2 endowed with the topology induced by	y	
		the usual topology of the plane \mathbb{R}^2 .		

Group - B (Functional Analysis - III)

,

[Marks: 18]

Answer any two questions. Only first two answers will be evaluated. $9 \times 2 =$			$9 \times 2 = 18$
1.	(a)	Let x_0 be a non-zero vector in the normed linear space X over the field F (=	[3]
		\mathbb{R} or \mathbb{C}). Prove that there exists a bounded linear functional g , defined on X , such	
		that $ g = 1$ and $g(x_0) = x_0 $.	
	(b)	For every x in a normed linear space X over $F(=\mathbb{R} \text{ or } \mathbb{C})$, show that $ x =$	[4]
		$\sup\{\frac{ f(x) }{\ f\ }: f \in X', \ f \neq 0\}.$ (Here X' denotes the dual space of X).	
	(c)	Is l^1 reflexive? Support your answer.	[2]
2.	(a)	Prove that every finite dimensional normed linear space is reflexive.	[3]
	(b)	Give an example with proper justification of a sequence in a normed linear space	[3]
		which is weakly convergent but not strongly convergent.	
	(c)	Let X be an inner product space over \mathbb{C} and A be an orthonormal set of vectors in X.	[3]
		Prove that for each $x \in X$, the set $E_x = \{ z \in A : \langle x, z \rangle \neq 0 \}$ is a countable set.	
3.	(a)	Let S be a closed subspace of a Hilbert space X. Prove that every $x \in X$ can be	[3]
		expressed uniquely as $x = y + z$, $y \in S$, $z \in S^{\perp}$, where S^{\perp} stands for orthogonal	
		complement of S.	
	(1)		F 1 - 7 1

(b) State and prove Riesz representation theorem over a Hilbert space. [1+5]