M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Applied Stream)

Time: 2 Hours

Full Marks: 45

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings]

Paper: MAS 403 (Viscous Flows, Boundary Layer Theory & Magneto Hydrodynamics-II)

Ar	Answer any five questions. Only the first five answers will be evaluated.		
1.		Write short notes on	[3×3]
		(a) magnetic pressure number (b) Sausage mode of instability (c) MHD Couette flow.	
2.		State and prove Cowling theorem in MHD.	[2+7]
3.		Show that magnetic force-free field satisfies Helmholtz equation and obtain its general solution.	[3+6]
4.	(a)	Using MHD approximations, simplify the expression for total current.	[4]
	(b)	Prove that for a perfectly conducting fluid, lines of magnetic force are frozen in the fluid.	[5]
5.		Derive magnetic induction equation and explain each term of the equation physically.	[5+4]
6.		Set up the governing equations with appropriate boundary conditions for MHD Rayleigh problem. Mention the assumptions involved in it.	[3×3]
7.	(a)	Show that the magnetic Reynolds number is the ratio of induced magnetic field to the applied magnetic field, in case of Hartmann flow.	[4]
	(b)	Obtain Ohm's law with Hall current for a static conductor.	[5]

M.A./M.Sc. Semester IV Examination, 2020 (Old Pattern under CDOE) Subject: Mathematics (Pure Stream)

Time: 2 Hours

Full Marks: 45

 $5 \times 9 = 45$

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. [Notation and symbols have their usual meanings]

Paper: MPS 403 (Advanced Functional Analysis-II)

Answer any **five** questions. Only the **first five** answers will be evaluated.

1. Let X be a normed linear space and Y be a subspace of X. Define a best [1+6+2] approximation to an element $x \in X$ out of Y. Let X be an inner product space and let $x \in X$. Prove that $y \in Y$ is a best approximation to x if and only if $(x - y) \perp Y$. Moreover show that $d(x,Y) = \sqrt{\langle x, x - y \rangle}$.

2. (a) Let X be a complex Banach algebra with an identity e. If x∈X and p(t) is a [9] polynomial with complex coefficients then show that σ(p(x)) = p(σ(x)), where σ(x) is the spectrum of x.

- 3. (a) Let X be a complex commutative Banach algebra with an identity e. When is an [1+3] ideal M of X said to be maximal? Show that any proper ideal of X is contained in a maximal ideal of X.
 - (b) Define an invertible element in a Banach algebra X with identity e. Prove that the set [1+4] of all invertible elements of X is an open set in X.
- 4. Let *X* be a complex commutative Banach algebra with an identity *e* .and let *M* denote [2+7] the set of all maximal ideals in *X*. Define the Gelfand topology on *M*. Prove that the maximal ideal space *M* is a compact Hausdorff space with respect to its Gelfand topology.
- 5. (a) Let X be a complex commutative Banach algebra with an identity e. For $x \in X$ define [1+8] the spectral radius of x. If r(x) is the spectral radius of x then prove that

$$r(x) = \lim_{n \to \infty} \left\| x^n \right\|^{\frac{1}{n}} .$$

- 6. (a) Let X be a complex Banach algebra with an identity e. When is a non-empty subset [1+3] I of X said to be an ideal of X? Show that if I is a proper ideal of X, then so is its closure, \overline{I} .
 - (b) Let *I* be a proper closed ideal of a complex Banach algebra *X* with an identity *e*. [5] Show that the quotient space *X* / *I* is also a commutative Banach algebra with identity *e* + *I* satisfying ||*e* + *I* || = 1.
- 7. Prove the representation theorem for a bounded linear functional over C[a,b], the [9] space of all real valued continuous functions over [a,b] with sup norm.

Paper: MPS 403 (Differential Geometry of Manifolds - II)

Answer any five questions. Only the first five answers will be evaluated. $5 \times 9 =$				
1.	(a)	Define Riemannian manifold. Deduce the Koszul's formula on a Riemannian manifold.	[2+5]	
	(b)	State Hopf-Rinow theorem for a connected Riemannian manifold.	[3]	
2.	(a)	Show that every 3-dimensional Einstein manifold is a manifold of constant curvature.	[6]	
	(b)	Prove that a Riemannian manifold of dimension greater than 3 is of constant curvature	[4]	
		if and only if it is projectively flat.		
3.	(a)	What do you mean by a metric connection on a Riemannian manifold?	[2+5]	
		Let ∇ be a metric connection on a Riemannian manifold (M,g) and $\overline{\nabla}$ be another		
		linear connection given by $\overline{\nabla}_X Y = \nabla_X Y + T(X,Y)$ for all $X, Y \in \chi(M)$, where T		
		is the torsion tensor corresponding to ∇ . Show that the following conditions are equivalent:		
		(i) $\overline{\nabla}g = 0$		
		(ii) $g(T(X,Y),Z) + g(Y,T(X,Z)) = 0.$		
	(b)	If f is a smooth function on a Riemannian manifold (M, g) with Riemannian	[3]	
		connection ∇ such that $f = g(X, X)$ for all $X \in \chi(M)$ then show that grad $f = 2$		
		$ abla_X X$.		
4.	(a)	Deduce Gauss and Codazzi equations for the submanifold of a Riemannian manifold.	[6]	
	(b)	Define hypersurface and lines of curvature.	[2+2]	
5.	(a)	Deduce Ricci identity on a Riemannian manifold.	[6]	
	(b)	Define Ricci tensor on a Riemannian manifold. Show that it is symmetric.	[2+2]	
6.	(a)	Define an almost complex structure F on a real smooth manifold. Find the rank of F	[2+3]	
	(h)	Show that an almost complex structure in an almost complex manifold is not unique.	[3+2]	
	(0)	Does the sphere S^3 admit a complex structure? Support your answer	[3+2]	
7	(a)	If a vector field V in an almost complex manifold is strictly almost analytic than show	[5]	
7.	(a)	that $N(V X) = 0$ for every X where N is the Nijenhuis tensor	[3]	
	(h)	Show that there always exists a half symmetric E – connection on an almost complex	[5]	
	(0)	manifold.	[2]	